Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{c^2+b^2-a^2}{2\cdot b\cdot c}=\dfrac{1}{2}\)
=>\(c^2+b^2-a^2=b\cdot c\)
=>\(\dfrac{b}{b^2-a^2}=\dfrac{c}{a^2-c^2}\)
\(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos A\)
\(=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos60\\ =AB^2+AC^2-2\cdot AB\cdot AC\cdot\dfrac{1}{2}\\ =AB^2+AC^2-AB\cdot AC\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a+b\sqrt{3}+c\sqrt{5})^2\leq (a^2+b^2+c^2)(1+3+5)\)
\(\Leftrightarrow (a+b\sqrt{3}+c\sqrt{5})^2\leq 9\Rightarrow a+b\sqrt{3}+c\sqrt{5}\leq 3\)
(đpcm)
Dấu "=" xảy ra khi \(\frac{a}{1}=\frac{b}{\sqrt{3}}=\frac{c}{\sqrt{5}}\) hay \(a=\frac{1}{3}; b=\sqrt{\frac{1}{3}}; c=\sqrt{\frac{5}{9}}\)
f/
\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)
\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=4sinC.sinA.sinB\)
g/
\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)
\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)
\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)
\(=1-cosC.cos\left(A-B\right)+cos^2C\)
\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)
\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)
\(=1-2cosC.cosA.cosB\)
d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)
e/
\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)