K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

Giải bài 32 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC.

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC (như hình vẽ)

Theo định lí thuận về tính chất các điểm thuộc tia phân giác: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài )

MI = MK ( Vì M thuộc phân giác của góc C ngoài )

Suy ra: MH = MK (cùng bằng MI)

Dựa vào định lí đảo về tính chất các điểm thuộc tia phân giác: Điểm nằm bên trong góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.

⇒ M thuộc phân giác của góc BAC (đpcm).

30 tháng 3 2022

eoeo

18 tháng 4 2019

Giải bài 32 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC.

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC (như hình vẽ)

(H ∈ tia AB, I ∈ BC, K ∈ tia AC)

Theo định lí 1: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài )

MI = MK ( Vì M thuộc phân giác của góc C ngoài )

Suy ra: MH = MK (cùng bằng MI)

Dựa vào định lí 2: Điểm nằm bên trong góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.

⇒ M thuộc phân giác của góc BAC (đpcm).

19 tháng 4 2017

Hướng dẫn :

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC

( H ∈ AB, I ∈ BC, K ∈ AC)

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài)

MI = MK (Vì M thuộc phân giác của góc C ngoài)

Suy ra : MH = MK

=> M thuộc phân giác của góc ˆBACBAC^

19 tháng 4 2018

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC

( H ∈ AB, I ∈ BC, K ∈ AC)

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài)

MI = MK (Vì M thuộc phân giác của góc C ngoài)

Suy ra : MH = MK

=> M thuộc phân giác của gócA

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui

7 tháng 4 2022

undefined

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC.

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC (như hình vẽ)

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài )

MI = MK ( Vì M thuộc phân giác của góc C ngoài )

=>MH = MK (cùng= MI)

⇒ M thuộc phân giác của góc BAC

18 tháng 12 2016

O A C B D E

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) : góc chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

=> \(\widehat{OCB}=\widehat{ODA};\widehat{OBC}=\widehat{OAD}\) ( cặp góc tượng ứng)

Có: \(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà: \(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

=> \(\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

=> \(\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)

Xét ΔCOE và ΔDOE có:

OC=OD(cmt)

\(\widehat{COE}=\widehat{DOE}\left(cmt\right)\)

OE: cạnh chung

=> ΔCOE=ΔDOE(c.g.c)

=> \(\widehat{OEC}=\widehat{OED}=90^o\)

18 tháng 12 2016

VỘI VÀNG QUÁ uk thánh soi

9 tháng 2 2018

A B C O K

a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK

                 => \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\)    (1)

               + \(\widehat{OKB}\)là góc ngoài của tam giác AKC

                  =>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)

Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)

hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)

b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)

=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)

 Xét tam giác ABC có:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)

=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)

Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)

Ta có: BO là tia phân giác của góc ACB

=>\(2\widehat{ABO}=\widehat{ABC}\)(**)

Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)

=>\(2\widehat{ACO}=\widehat{ACB}\)

=> CO là tia phân giác của góc ACB

11 tháng 8 2019

thank you

14 tháng 9 2016

Hình tự vẽ nha 

Giải : Kẻ DI vuông góc với AB, DK vuông góc với AC. Xét ΔADC và ΔADB : các đường cao DI = DK, các đáy AC = 2 AB nên SADC = 2 SADB. Vẫn xét hai tam giác trên có chung đường cao kẻ từ A đến BC, do SADC = 2 SADB nên DC = 2 DB. Giải tương tự như trên, ta chứng minh được bài toán tổng quát : Nếu AD là phân giác của ΔABC thì DB/DC = AB/AC. Bài toán 2 : Cho hình thang ABCD (AB // CD), các đường chéo cắt nhau tại O. Qua O, kẻ đường thẳng song song với hai đáy, cắt các cạnh bên AC và BC theo thứ tự tại E và F. Chứng minh rằng OE = OF