Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(IM=\frac{1}{2}BD,IN=\frac{1}{2}CE\)
mà BD = CE(gt)
=> IM = IN
=> \(\Delta\)MIN cân ở đỉnh I
b) Vì \(\Delta\)MIN cân ở I(câu a) nên \(\widehat{IMN}=\widehat{INM}\)
Mặt khác theo ta lại có : IM // BP , do đó \(\widehat{P}=\widehat{MIN}\)(hai góc so le ngoài)
=> \(\widehat{APQ}=\widehat{AQP}\)
Vậy \(\Delta\)AQP cân tại đỉnh A
Hình vẽ : A A A B B B C C C M M M D D D E E E N N N I I I F F F P P P
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
Giả thiết của bạn bị sai hay sao ấy, mik nghĩ không ra câu trả lời