K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có

CA=CB

\(\widehat{ACM}\) chung

Do đó: ΔCMA=ΔCNB

2: Xét ΔCAB có CN/CA=CM/CB

nên NM//BA

1: Xét ΔCAM vuông tại M và ΔCBN vuông tại N có

CA=CB

\(\widehat{ACM}\) chung

Do đó: ΔCAM=ΔCBN

Suy ra: CM=CN; AM=BN

Xét ΔCNK vuông tại N và ΔCMK vuông tại M có 

CN=CM

CK chung

Do đó: ΔCNK=ΔCMK

Suy ra: \(\widehat{NCK}=\widehat{MCK}\)

hay CK là tia phân giác của góc ACB

2: Xét ΔCAB có CN/CA=CM/CB

nên MN//AB

3: AB=10cm

nên AD=DB=5cm

\(CD=\sqrt{12^2-5^2}=\sqrt{119}\left(cm\right)\)

 

7 tháng 3 2022

1) Xét \(\Delta CAM\) vuông tại M và \(\Delta CBN\) vuông tại N:

\(\widehat{C}chung.\)

\(AC=BC\) (\(\Delta ABC\) cân tại C).

\(\Rightarrow\) \(\Delta CAM=\) \(\Delta CBN\left(ch-gn\right).\)

Xét \(\Delta ABC\) cân tại C:

BN là đường cao \(\left(BN\perp AC\right).\)

AM là đường cao \(\left(AM\perp BC\right).\)

K là giao điểm của AM; BN (gt).

\(\Rightarrow\) K là trực tâm.

\(\Rightarrow\) CK là đường cao từ đỉnh C.

\(\Rightarrow\) CK là tia phân giác \(\widehat{ACB}\) (Tính chất tam giác cân).

2) \(\Delta CAM=\) \(\Delta CBN\left(cmt\right).\)

\(\Rightarrow CM=CN\) (2 cạnh tương ứng).

\(\Rightarrow\) \(\Delta CNM\) cân tại C.

\(\Rightarrow\) \(\widehat{CNM}=\dfrac{180^o-\widehat{C}}{2}.\)

Mà \(\widehat{CAB}=\dfrac{180^o-\widehat{C}}{2}\) (\(\Delta ABC\) cân tại C).

\(\Rightarrow\) \(\widehat{CNM}=\widehat{CAB}.\)

\(\Rightarrow MN//AB\left(dhnb\right).\)

3) Xét \(\Delta ABC\) cân tại C:

CD là đường cao (cmt).

\(\Rightarrow\) CD là đường trung tuyến (Tính chất tam giác cân).

\(\Rightarrow\) D là trung điểm của AB.

\(\Rightarrow\) \(AD=\dfrac{1}{2}AB=\dfrac{1}{2}10=5\left(cm\right).\)

Xét \(\Delta ACD\) vuông tại D:

\(AC^2=CD^2+AD^2\left(Pytago\right).\\ \Rightarrow12^2=CD^2+5^2.\\ \Rightarrow CD^2=119.\\ \Rightarrow CD=\sqrt{119}\left(cm\right).\)

27 tháng 12 2021
Giúp mình bài này đi mà :<
23 tháng 2 2023

a.Xét ΔDAB,ΔDMBΔ���,Δ��� có:

ˆDAB=ˆDMB(=90o)���^=���^(=90�)

Chung BD��
ˆABD=ˆMBD���^=���^

→ΔDAB=ΔDMB→Δ���=Δ���(cạnh huyền-góc nhọn)

b.Từ câu a →BA=BM,DA=DM→��=��,��=��

→B,D∈→�,�∈ trung trực AM��

→DB→�� là trung trực AM��

c.Ta có: DM⊥BC→KD⊥BC��⊥��→��⊥��

               CA⊥AB→CD⊥BK��⊥��→��⊥��

→D→� là trực tâm ΔBCKΔ���

→BD⊥CK→��⊥��

→BN⊥KC→��⊥��

Xét ΔBMK,ΔBACΔ���,Δ��� có:

Chung ^B�^

BM=BA��=��

ˆBMK=ˆBAC(=90o)���^=���^(=90�)

→ΔBMK=ΔBAC(c.g.c)→Δ���=Δ���(�.�.�)

→BK=BC→��=��

→ΔKBC→Δ��� cân tại B�

d.Ta có: ΔBCKΔ��� cân tại B,BN⊥CK→N�,��⊥��→� là trung điểm KC��

Trên tia đối của tia NP�� lấy điểm F� sao cho NP=NF��=��

Xét ΔNKP,ΔNCFΔ���,Δ��� có:

NK=NC��=��

ˆKNP=ˆCNF���^=���^

NP=NF��=��

→ΔNKP=ΔNCF(c.g.c)→Δ���=Δ���(�.�.�)

→KP=CF,ˆNKP=ˆNCF→KP//CF→CF//BP→��=��,���^=���^→��//��→��//��

Xét ΔFPC,ΔBPCΔ���,Δ��� có:

ˆCPF=ˆPCB���^=���^ vì NP//BC��//��

Chung NP��

ˆPCF=ˆCPB���^=���^ vì BP//CF��//��

→ΔFPC=ΔBCP(g.c.g)→Δ���=Δ���(�.�.�)

→CF=BP→��=��

→PK=BP→��=��

→P→� là trung điểm BK��

Do E,N�,� là trung điểm BC,CK��,��

→KE,BN,CP→��,��,�� đồng quy tại trọng tâm ΔKBCΔ��� 

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :Tam giác ADB bằng tam giác AECTam giác ADK bằng tam giác AEKAK là tia phân giác của góc ABài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )      A . CMR : AH = AK      B . Gọi I là giao điểm của BH và CK. CMR...
Đọc tiếp

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :

  1. Tam giác ADB bằng tam giác AEC
  2. Tam giác ADK bằng tam giác AEK
  3. AK là tia phân giác của góc A

Bài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )

      A . CMR : AH = AK

      B . Gọi I là giao điểm của BH và CK. CMR : AI là phân giác của góc A

      C . Gọi M là trung điểm của BC. CMR : AM vuông góc với BC

Bài 4 : Cho tam giác BFC cân tại B. Kẻ FE vuông góc với BC tại E, CA vuông góc với BF tại A.

a)      CMR: Tam giác BEF = tam giác BAC

b)     FE cắt CA tại D. CMR : BD là tia phân giác của góc ABC

c)      Gọi M là trung điểm của FC. CMR: BM vuông góc với AE

0