Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình chắc có rồi
tam giác BEH vuông tại E => BE^2 + HE^2 = BH^2 (pytago)
HE = DH (câu b)
=> BE^2 + HD^2 = BH^2 (1)
Tam giác BHC vuông tại H => BH^2 = BC^2 - HC^2 (pytago)
HC = HA (Câu a)
=> BH^2 = HC^2 - AH^2 và (1)
=> BE^2 + DH^2 = BC^2 - AH^2
a) Xét ΔABH và ΔCBH có :
AHBˆ=CHBˆ=90oAHB^=CHB^=90o
BA = BC ( ΔABC cân ở A )
Aˆ=CˆA^=C^ ( ΔABC cân ở B )
=> ΔABH = ΔCBH ( c.h-g.n )
=> HA = HC ( 2 cạnh tương ứng )
b) Do ΔABH = ΔCBH ( c/m a )
=> ABHˆ=CBHˆABH^=CBH^ ( 2 góc tương ứng )
hay DBHˆ=EBHˆDBH^=EBH^
+) ΔBDH và ΔBEH có :
BDHˆ=BDHˆ=90oBDH^=BDH^=90o
DBHˆ=EBHˆ(cmt)DBH^=EBH^(cmt)
BH là cạnh chung
=> ΔBDH = ΔBEH ( c.h-g.n )
=> HE = HD ( 2 cạnh tương ứng )
c) Do ΔBDH = ΔBEH ( c/m b )
=> BD = BE ( 2 cạnh tương ứng )
=> ΔBDE cân ở B
d) Do ΔBHE vuông ở E ; áp dụng định lí Pi-ta-go , ta có :
BE2 + HE2 = BH2
Mà HE = HD (c/m b )
=> BE2 + HD2 = BH2 (*)
+) Mặt khác , ΔBCH vuông ở H , áp dụng định lí Pi-ta-go , ta có :
BC2 = BH2 + HC2
=> BC2−HC2=BH2BC2−HC2=BH2
mà HC = HA ( c/m a )
=> BC2−HA2=BH2BC2−HA2=BH2 (**)
Từ (*) và (**)
=> BE2+HD2=BC2−HA2(=BH2)BE2+HD2=BC2−HA2(=BH2)
Sửa câu a thành CM: BM = CM
A B C D E M K
GT | △ABC cân tại A ( BAC = 70o) BAM = MAC = BAC/2 MD ⊥ AB (D AB) ;ME ⊥ AC (E AC) ME = MK |
KL | a, BM = CM b, △DME cân c, DE // BC d, MDK = ? |
Bài giải:
Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Xét △BAM và △CAM
Có: AB = AC (cmt)
BAM = MAC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.g.c)
=> BM = CM (2 cạnh tương ứng)
b, Xét △DBM vuông tại D và △ECM vuông tại E
Có: BM = MC (cmt)
DBM = ECM (cmt)
=> △DBM = △ECM (ch-gn)
=> DM = EM (2 cạnh tương ứng)
Xét △DME có: DM = EM (cmt) => △DME cân tại M
c, Vì △DBM = △ECM (cmt)
=> DB = EC (2 cạnh tương ứng))
Ta có: AD + DB = AB
AE + EC = AC
Mà AB = AC (cmt) ; DB = EC (cmt)
=> AD = AE
Xét △ADE có: AD = AE (cmt) => △ADE cân tại A => ADE = (180o - DAE) : 2 (1)
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => ADE = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
d, Ta có: ABC = (180o - BAC) : 2 (cmt)
=> ABC = (180o - 70o) : 2 = 110o : 2 = 55o
Mà ABC = ACB (cmt)
=> ACB = 55o
Xét △BMK và △CME
Có: BM = MC (cmt)
BMK = EMC (2 góc đối đỉnh)
MK = ME (gt)
=> △BMK = △CME (c.g.c)
=> MBK = MCE (2 góc tương ứng)
Mà MCE = 55o
=> MBK = 55o
Ta có: DBK = DBM + MBL = 55o + 55o = 110o
Lại có: DMB = EMC (△DBM = △ECM)
Mà EMC = BMK (2 góc đối đỉnh)
=> DMB = BMK
Ta có: MK = ME (gt)
Mà ME = DM (cmt)
=> DM = MK
Xét △BDM và △BKM
Có: BM là cạnh chung
DMB = BMK (cmt)
MD = MK (cmt)
=> △BDM = △BKM (c.g.c)
=> BD = BK (2 cạnh tương ứng)
=> △BDK cân tại B
=> BDK = (180o - KBD) : 2 = (180o - 110o) : 2 = 70o : 2 = 35o
Ta có: BDM + MDA = 180o (2 góc kề bù)
=> BDK + MDK + 90o = 180o
=> BDK + MDK = 90o
=> 35o + MDK = 90o
=> MDK = 55o
Cho tam giác ABC. Lấy D,E trên cạnh AB sao cho AD=DE=EB. vẽ DG và EF song song với BC (F và G thuộc AC)
a, chứng minh: AG=GF=FC
b, giả sử DG=3cm. Tính BC
xét 2 tam giác ABM=tam giác ACM(c.c.c)(tự cm)
nên góc AMB=góc AMC=180ddooj /2=90 độ
suy ra AM vuông góc vs BC
(Bạn tự vẽ hình giùm)
a/ \(\Delta HAB\)vuông và \(\Delta HCB\)vuông có: AB = CB (\(\Delta ABC\)cân tại A)
Cạnh HB chung
=> \(\Delta HAB\)vuông = \(\Delta HCB\)vuông (cạnh huyền - cạnh góc vuông) => HA = HC (hai cạnh tương ứng)
b/ \(\Delta AHD\)vuông và \(\Delta CHE\)vuông có: HA = HC (cm câu a)
\(\widehat{A}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
=> \(\Delta AHD\)vuông = \(\Delta CHE\)vuông (cạnh huyền - góc nhọn) => HD = HE (hai cạnh tương ứng)
c/ Ta có \(\Delta AHD\)= \(\Delta CHE\)(cm câu b) => AD = CE (hai cạnh tương ứng) (1)
và AB = AC (\(\Delta ABC\)cân tại A) (2)
Lấy (2) trừ (1) => AB - AD = AC - CE
=> BD = BE => \(\Delta BDE\)cân tại B
a)Vì AM là đường trung tuyến ứng với cạnh huyền của △ABC△ABC vuông tại A nên AM=MB=MCAM=MB=MC
⇒△MAB;△MAC⇒△MAB;△MAC cùng cân tại M
⇒MD⇒MD vừa là đường cao, vừa là đường phân giác trong △MAB△MAB.
⇒△BMD=△AMD(c.g.c)⇒ˆDBM=ˆDAM=90∘→DB⊥BC⇒△BMD=△AMD(c.g.c)⇒DBM^=DAM^=90∘→DB⊥BC
Chứng minh tương tự có: △AME=△CME(c.g.c)→ˆECM=ˆMAE=90∘→CE⊥BC△AME=△CME(c.g.c)→ECM^=MAE^=90∘→CE⊥BC
DB//CEDB//CE
b) Từ các chứng minh trên ta suy ra: BD=DA;CE=AE→BD=DA;CE=AE→ đpcm
bẠN kham khỏa nhé.
B B C C H H A A M M N N
a) Xét hai tam giác vuông AHB và AHC có:
Cạnh AH chung
AB = AC (Tam giác ABC cân tại A)
\(\Rightarrow\Delta AHB=\Delta AHC\) (Cạnh huyền - cạnh góc vuông)
b) Do \(\Delta AHB=\Delta AHC\Rightarrow\widehat{MAH}=\widehat{NAH}\)
Xét hai tam giác vuông AMH và ANH có:
Cạnh AH chung
\(\widehat{MAH}=\widehat{NAH}\)
\(\Rightarrow\Delta AMH=\Delta ANH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AM=AN\)
c) Xét tam giác AMN cân tại A nên \(\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\)
Tam giác ABC cũng cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Suy ra \(\widehat{AMN}=\widehat{ABC}\)
Chúng lại ở vị trí đồng vị nên MN // BC.
d) Xét hai tam giác vuông BMH và CNH có:
BH = CH (Do \(\Delta AHB=\Delta AHC\))
\(\widehat{MBH}=\widehat{NCH}\)
\(\Rightarrow\Delta BMH=\Delta CNH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow MH=NH\)
\(\Rightarrow MH^2=NH^2\Rightarrow BH^2-MB^2=AH^2-AN^2\)
\(AH^2+BM^2=AN^2+BH^2\)