Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)
\(\widehat{ACB}+\widehat{ACE}=180^0\)
Mà \(\widehat{ABC}=\widehat{ACB}\)( Do tam giác ABC cân ở A )
=> \(\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
AB = AC ( Do tam giác ABC cân ở A )
\(\widehat{ABD}=\widehat{ACE}\)( cmt )
DB = CE ( cmt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( hai cạnh tương ứng )
b) Mik chưa hiểu ý câu b cho lắm, vì đề bài chưa cho điểm N thì điểm N chui từ đâu ra?
c) Vì tam giác ABD = tam giác ACE ( cmt )
=> \(\widehat{ADB}=\widehat{AEC}\)
Xét tam giác HBD và tam giác KCE có:
\(\widehat{BHD}=\widehat{CKE}\left(=90^0\right)\)
Cạnh huyền: BD = CE ( gt )
Góc nhọn: \(\widehat{ADB}=\widehat{AEC}\) ( cmt )
=> Tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> BH = CK ( đpcm )
# Học tốt #
a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
Hay \(\widehat{ABD}=\widehat{ACE}\)
Theo định lý Cos ta có
\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)
\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)
Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE
Nên AD = AE hay tam giác ADE cân tại A
b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)
Nên góc KCE = góc DBH
Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)
Xét tam giác HBA và tam giác ACK vuông có :
+ góc HBA = góc KCA
+ AB = AC
\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)
c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)
\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)
\(\widehat{HBA}=\widehat{ACK}\)
\(\widehat{ABC}=\widehat{ACB}\)
Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O
d) Xét tam giác AMB và tam giác AMC
+ AM chung
+ BM = MC (gt)
+ AB = AC (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c
Và hai góc BAM = góc CAM
Hay AM là tia phân giác của góc BAC
Xét tam giác AOB và tam giác ACO
+ AB = AC (gt)
+ OB = OC (cmt )
+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)
Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c
Và góc BAO = góc CAO
Hay AO là phân giác của góc BAC
Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
GIÚP MÌNH VỚI Ạ MÌNH ĐANG RẤT GẤP
Bài làm
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)( Hai góc kề bù )
\(\widehat{ACB}+\widehat{ACE}=180^0\)( Hai góc kề bù )
Mà \(\widehat{ABC}=\widehat{ACB}\)( Do tam giác ABC cân ở A )
=> \(\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
AB = AC ( Do tam giác ABC cân ở A )
\(\widehat{ABD}=\widehat{ACE}\)( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( hai cạnh tương ứng )
b) Ta có:
BD + BM = DM
CE + CM = EM
Mà DB = CE ( gt ), BM = CM ( Do M là trung điểm )
=> DM = EM
Xét tam giác AMD và tam giác AME có:
AD = AE ( cmt )
AM chung
DM = EM ( cmt )
=> Tam giác AMD = tam giác AME ( c.c.c )
=> \(\widehat{DAM}=\widehat{EAM}\)( Hai góc tương ứng )
b) Vì tam giác ABD = tam giác ACE ( cmt )
=> \(\widehat{ADB}=\widehat{ACE}\)( Hai góc tương ứng )
Xét tam giác BHD và tam giác CKE có:
\(\widehat{BHD}=\widehat{CKE}\left(=90^0\right)\)
Cạnh huyền: BD = CE ( gt )
Góc nhọn: \(\widehat{ADB}=\widehat{ACE}\)( cmt )
=> Tam giác BHD = tam giác CKE ( cạnh huyền - góc nhọn )
=> BH = CK ( hai cạnh tương ứng )
# Học tốt #