K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

người mới hả

1: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

2: 

a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)

b: BC=6cm nên BM=3cm

=>AB=AC=5cm

3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A

5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

15 tháng 4 2019

hình dễ nên tự vẽ

a, xét 2 t.giác vuông ABM và HBM có:

                BM cạnh chung

                \(\widehat{ABM}\)=\(\widehat{HBM}\)(gt)

=> t.giác ABM=t.giác HBM(cạnh huyền- góc nhọn)

=> AB=BH(2 cạnh tương ứng)

b, ta có: \(\widehat{ABM}\)+\(\widehat{BAM}\)+\(\widehat{AMB}\)=180 độ

=>30 độ+90 độ +\(\widehat{AMB}\)=180 độ

=>\(\widehat{AMB}\)=60 độ mà \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)

=>\(\widehat{CMD}\)=60 độ

xét t.giác MCD có: \(\widehat{CMD}\)+\(\widehat{MDC}\)+\(\widehat{MCD}\)=180 độ

=>60 độ+ 90 độ+ \(\widehat{MCD}\)=180 độ

=>\(\widehat{MCD}\)=30 độ(1)

Mặt khác \(\Delta\)ABC có:\(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{ACB}\)=180 độ

=>60 độ+90 độ+\(\widehat{ACB}\)=180 độ

=> \(\widehat{ACB}\)=30 độ(2)

từ (1) và (2) suy ra\(\widehat{BCA}\)=\(\widehat{ACD}\)

c,

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên Tam giác ABM=tam giác ACM (c.g.c) Vì tam giác ABC cân tại A và AM là tia phân giác của góc BAC nên AM cũng là đường cao của tam giác ABC kẻ từ đỉnh A đến đường thẳng chứa cạnh BC. => AM _|_ BC. b) Ta có: Tam giác ABM = Tam giác ACM (cmt) =>BM=CM(2cạnh tương ứng) =>AM là đường trung tuyến của BC. Ta có: AM là đường trung tuyến của BC (cmt) BQ là đường trung tuyến của AC(gt) BQ cắt AM tại G (gt) => G là giao điểm của 3 đường trung tuyến trong tam giác ABC. =>G là trọng tâm của tam giác ABC. (đpcm) c) Ta có: BM=CM (cmt) => BM=CM=BC/2=18/2=9 (cm) Xét tam giác ABM vuông tại M (do AM_|_BC(cmt)) Áp dụng định lí Pitago ta có: AM^2+BM^2=AB^2 => AM^2=AB^2-BM^2 => AM^2=15^2-9^2 => AM^2=225-81 => AM^2= 144 Do AM>0 nên AM=√144=12cm Mà AG=2/3AM(tính chất 3 đường trung tuyến của tam giác) =>AG=2/3.12=8cm d) (Làm như bạn kia) CHÚC BẠN HỌC TỐT!!!
2 tháng 5 2019

a, AM = ?

Xét ΔABM và ΔACM có:

AB = AC (hai cạnh bên)

^B = ^C (hai góc ở đáy)

BM = MC (gt)

Do đó: ΔABM = ΔACM (c.g.c)

=> ^AMB = ^AMC (hai góc tương ứng)

Mà ^AMB + ^AMC = 180o

=> ^AMB = ^AMC = 180o : 2 = 90o

Hay AM ⊥ BC

Ta có: BM = MB = BC/2 = 10/2 =5 (cm)

Áp dụng định lí Pytago vào ΔABM vuông tại M có:

AB2 = AM2 + MB2

=> AM2 = AB2 - MB2 = 132 - 52 = 169 - 25 = 144

=> AM = 12 (cm)

b, NA = NC

Ta có: GM = 1/2AM => AG = 2/3 = AM

Hay G là trọng tâm của ΔABC.

Mà BG cắt AC tại N => BN là trung tuyến ứng với AC

Hay NA = NC.

c, BN = ?

Ta có: GM = 1/3 AM = 1/3 . 12 = 4 (cm)

ÁP dụng định lý Pytago vào ΔBGM vuông tại M có:

BG2 = BM2 + MG2

=> BG2 = 52 + 42 = 25 + 16 = 41 => GB = √41

=> BN = BG + GN = 3BG = 3√41.

d, LN//BC

Vì AB = AC (hai cạnh bên)

Mà CL là trung tuyến ứng với AB, BN là trung tuyến ứng với AC.

Hay LA = LB = AN = NC = AB/2 (=AC/2) LA = LB

=> ΔALN cân tại A

=> ^ALN = ^ANL = 180o - ^BAC / 2

Mặt khác: ΔABC cân tại A => ^ABC = ^ACB = 180o - ^BAC / 2

=> ^ALN = ^ABC

=> LN // BC (TH: hai góc đồng vị)

4 tháng 5 2019

Load nhầm hình nhé ')) Sorry.