Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tg ABC cân tại A(gt), đường cao AH
=> AH đồng thời là đi trung trực của tgABC
=> BH=HC
Xét ΔEBH và ΔFCH có
EB=FC(gt)
ˆB=ˆC( vì tg ABC cân tại A)
BH=CH(cmt)
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
Điểm A nằm trên đường trung trực của EF(2)
Từ (1) và (2): => E và F đối xứng nhau qua AH
a)Xét tam giác ABC có \(\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\Rightarrow EF\perp AH\)
Chứng minh được tam giác BEH = tam giác CFH (g.c.g)
\(\Rightarrow EH=HF\)
Nên E đx với F qua H
b) Ta có \(AH\cap BK\cap CI=O\)
Mà \(O\in AH\) và \(AH\) là đường cao
\(\Rightarrow\)BK và CI là đường cao
Chứng minh được \(\Delta AKB=\Delta AIC\left(ch-gn\right)\)
\(\Rightarrow BK=CI;\widehat{ABK}=\widehat{ACI}\)
Mà BE=CF
\(\Rightarrow\Delta BEK=\Delta CFI\left(c.g.c\right)\)
\(\Rightarrow EK=FI\)
Đặt đề hơi ảo vì có 2 góc H nên mình sẽ để CO cắt AB tại I
a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH
A B C E K H D M
a/
Ta có
\(\widehat{B}=\widehat{C}\) (góc ở đáy tg cân ABC)
EK//AB \(\Rightarrow\widehat{EKC}=\widehat{B}\) (góc đồng vị)
\(\Rightarrow\widehat{EKC}=\widehat{C}\) => tg EKC cân tại E => CE=EK
Mà AD=CE
=> AD=EK (1)
Ta có
EK//AB => EK//AD (2)
Từ (1) và (2) => ADKE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> MA=MK; MD=ME (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
b/
Ta có \(H\in\left(M;MK\right)\) => MH=MK
Mà MK=MA (cmt)
=> MH=MK=MA
=> tg MHK cân tại M \(\Rightarrow\widehat{MHK}=\widehat{MKH}\)
\(\widehat{HMK}+\widehat{MHK}+\widehat{MKH}=\widehat{HMK}+2\widehat{MHK}=180^o\) (tổng các góc trong của 1 tg = 180 độ)
MH=MK=MA (cmt) => tg MAH cân tại M
\(\Rightarrow\widehat{MAH}=\widehat{MHA}\)
\(\widehat{HMK}=\widehat{MAH}+\widehat{MHA}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)
\(\Rightarrow\widehat{HMK}=2\widehat{MHA}\)
Từ \(\widehat{HMK}+2\widehat{MHK}=180^o\Rightarrow2\widehat{MHA}+2\widehat{MHK}=180^o\)
\(\Rightarrow\widehat{MHA}+\widehat{MHK}=\widehat{AHK}=90^o\Rightarrow AH\perp BC\)
Xét tg vuông ABH và tg vuông ACH có
AH chung
AB=AC (cạnh bên tg cân ABC)
=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)
=> HB=HC