Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ủa nhiều cách hả?
Ta có hình vẽ:
A B C D
Cách 1: Xét \(\Delta DBC\)có: \(\widehat{DBC}>90^o\Rightarrow\widehat{BCD}< 90^o\)
=> DC>DB
=> Đpcm
Cách 2: Áp dụng BĐT tam giác vào \(\Delta ADC\), ta có:
DC>AD-AC=AD-AB=DB
=> DC>DB
=> Đpcm
A B C D Vì ΔABC cân tại A nên ∠ABC và ∠ACB nhọn
⇒∠CBD tù
mà trong tam giác góc tù là góc lớn nhất nên cạnh đối diện góc tù là cạnh lớn nhất ⇒CD > BD ( ĐPCM)
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi