K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMBN có

I là trung điểm chung của AB và MN

góc AMB=90 độ

Do đó: AMBN là hình chữ nhật

b: Xét tứ giác ACMN có

AN//CM

AN=CM

Do đó: ACMN là hình bình hành

26 tháng 11 2016

a)AMBN có: AI=IB; NI=IM

=> AM BN là hbh (1).

ABC có AM là đttuyen

=> AM là đcao

=> AM vuông góc với BC (2).

Từ 1 2 => AMBN là hcn.

b)AMBN là hcn => AN=BM và AN song song với BM mà BM=MC và B, M, C thẳng hàng => AN=MC và AN song song với MC => ACMN là hbh.

c) ABC là tam giác vuông cân

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

3 tháng 11 2017

A E O F B M C N

a)  Do tam giác ABC cân tại A có AM là trung tuyến nên AM là đường cao.

Xét tam giác vuông ABM có ME là trung tuyến ứng với cạnh huyền nên \(EA=EM\)

Tương tự FM = FA

Lại có tam giác ABC cân tại A nên AB = AC hay AE = AF. Suy ra AE = EM = MF = FA hay AEMF là hình thoi.

b) Xét tứ giác AMBN có EA = EB; EM = EN nên AMBN là hình bình hành.

Lại có \(\widehat{AMB}=90^o\Rightarrow\) AMBN là hình chữ nhật.

Xét tam giác ABC có E, F lần lượt là trung điểm của AB và AC nên EF là đường trung bình của tam giác.

Hay EF // BC

Vậy BEFC là hình thang. Lại có \(\widehat{EBC}=\widehat{FCB}\) nên BEFC là hình thang cân.

c)  Do AMBN là hình chữ nhật nên NA song song và bằng BM. Suy ra NA cũng song song và bằng MC.

Xét tam giác ANMC có AN song song và bằng MC nên NACM là hình bình hành.

Vậy AM và NC cắt nhau tại trung điểm mỗi đường. Do O là trung điểm AM nên O là trung điểm NC.

d) Tứ giác AEMF là hình thoi. Để nó là hình vuông thì \(\widehat{EAF}=90^o\) hay tam giác ABC vuông cân tại A.

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:

a. $M,N$ đối xứng nhau qua $O$ nghĩa là $O$ là trung điểm $MN$

Tứ giác $AMBN$ có 2 đường chéo $AB, MN$ cắt nhau tại trung điểm $O$ của mỗi đường nên $AMBN$ là hbh $(1)$

Mặt khác, tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ đồng thời là đường cao

$\Rightarrow AM\perp BC$ nên $\widehat{AMB}=90^0(2)$

Từ $(1); (2)\Rightarrow AMBN$ là hình chữ nhật

b. Vì $AMBN$ là hcn nên $BM\parallel AN$ và $BM=AN$

Mà $B,M,C$ thẳng hàng và $BM=MC$ nên:

$AN\parallel CM, AN=CM$

$\Rightarrow ACMN$ là hình bình hành 

c. 
$ACMN$ là hbh nên $MN\parallel AC$

Để $ACMN$ là hình vuông thì $MN\perp AB$

$\Leftrightarrow AC\perp AB$

$\Leftrightarrow ABC$ là tam giác vuông tại $A$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Hình vẽ:

13 tháng 12 2016

a,Xet tam giac ABC co : 

BI=IA va BM=MC

=>IM la dtb => IM//AC va IM=1/2 AC

Ma IM=IN=>MN=AC

+Xet tu giac ANMC co : 

MN=AC

Va IM//AC=>MN//AC

=> ANMC la HBH

+Xet tu giac AMBN co : 

I la trung diem BA (BI=AI)

I la trung diem MN (MI=NI)

=>AMNB la HBH

Ma MI//AC hay AB vuong goc voi AC

=>MI vuong goc voi AB

Vay hinh binh hanh AMNB la hinh thoi ( hbh co 2 duong cheo cat nhau va bang 90 la hinh thoi)

b, Canh IM dai la :

IM=1/2AC=>IM=1/2.6=>IM=3

Canh MN dai la : 

MN=2IM=>MN=2.3=6

Dien h cua tu giac AMBN la :

\(\frac{1}{2}.d_1.d_2=\frac{1}{2}.4.6=12cm^2\)

Vay dien h cua tu giac AMBN la 12cm2

c, Tam giác vuông ABC cần điều kiện gi để AMBN là hình vuông la :

Ta có : AMBN la hinh thoi => hinh thoi AMBN can co 1 goc vuong

Thi đường trung tuyến AM can vuong goc voi BC

Hay AM la duong cao cua tam giac ABC

=> Hinh thoi AMBN co 1 goc vuong vuong M=90

=> AMBN la hinh vuong

Vậy tam giác vuông ABC cân là tam giác vuông cân để AMBN là hình vuông.

nho k nha

12 tháng 12 2016

kick đúng tui xong tui làm cko( Việt Nam nói là làm)

24 tháng 10 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

24 tháng 10 2021

a, Vì I là trung điểm MK và AC nên AMCK là hbh

Mà AM là tt nên cx là đường cao 

Do đó AM⊥MN nên AMCK là hcn

b, Vì AMCK là hcn nên AK//CM hay AK//MB và AK=CM=BM(do AM là tt)

Do đó AKMB là hbh