Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn xem lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-aduong-cao-ahve-he-vuong-goc-voi-ab-tai-egoi-ck-la-duong-cao-cua-tam-giac-abcchung-minh1-phan-ck21-phan-cb2-1-phan.8561726987074

A B C H K O D E F P Q
a) +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.
Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB
Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF
Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE
=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)
Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF
=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)
Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF
Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)
+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450
Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)
=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).
b) Xét tứ giác DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)
hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Lời giải:
Tam giác $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến.
$\Rightarrow H$ là trung điểm $BC$
Do đó:
$\frac{1}{CB^2}+\frac{1}{4AH^2}=\frac{1}{(2BH)^2}+\frac{1}{4AH^2}=\frac{1}{4}(\frac{1}{AH^2}+\frac{1}{BH^2})$
$=\frac{1}{4}.\frac{1}{EH^2}$ (áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABH$)
$=\frac{1}{(2EH)^2}(1)$
Lại có:
$EH\perp AB, CK\perp AB$ nên $EH\parallel CK$
$\Rightarrow \frac{EH}{KC}=\frac{BH}{BC}=\frac{1}{2}$
$\Rightarrow 2EH=KC(2)$
Từ $(1); (2)\Rightarrow \frac{1}{CB^2}+\frac{1}{4AH^2}=\frac{1}{(2EH)^2}=\frac{1}{CK^2}$ (đpcm)
Hình vẽ: