K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

a/ Xét tứ giác AEHF

HE vuông góc AB; AF vuông góc AB => HE//AF

AE vuông góc AC; HF vuông góc AC => AE//HH

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1)

Mà ^BAC=90

=> AEHF là HCN => AH=EF (hai đường chéo HCN = nhau)

b/ Gọi O là giao của AH và EF

+ Xét tg vuông HCF có IH=IC => IF=IH (Trung tuyến thuộc cạnh huyền băng nửa cạnh huyền)

=> tg IHF cân tại I => ^IHF=^HFI (1)

+ Ta có AH=EF (cmt) và OA=OH; OE=OF (trong HCN các đường chéo cắt nhau tại trung điểm môic đường => OH=OF

=> tg OHF cân tại O => ^OHF=^OFH (2)

+ Mà ^IHF+^OHF=^AHC=90 (3)

=> ^HFI+^OFH=^EFI=90 => EF vuông góc với FI

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

10 tháng 9 2017

a. Tứ giác AEHD có 3 góc vuông => AEHD là hình chữ nhật  
=> DE = AH 
b.* Vì D thuộc AB => image  
* Gọi O là giao của DE và AH 
AEHD là hình chữ nhật => OA = OE => Tam giác OAE cân => image hay image (1) 
Có : image ( Hệ quả định lý tổng 3 góc của 1 tam giác ) (2) 
Tương tự có : image (3) 
Từ (1),(2),(3) => đpcm  
c. GỌi K là giao của DE và AM 
M là trung điểm của cạnh huyền BC trong tam giác ABC vuông tại A => AM là trung tuyến => AM = MC => Tam giác MAC cân =>imagehay 

image .  

Mà image (theo (3)) 
=> image  
Áp dụng định lý tổng 3 góc của 1 tam giác tính được :image  
=> đpcm

P/s: Tham khảo nhé, mà hình như đề thiếu thì phải??

10 tháng 9 2017

ban giai ki hon duoc ko