Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác AFC và tam giác AEB có :
góc A chung
AB = AC (gt)
góc B1 = góc C1 (gt)
=>tam giác AFC = tam giác AEC (g.c.g)
=>FC = EB (đcpcm)
b)Vì tam giác AFC = tam giác AEC (cmt)
=>AF=AE (hai cạnh tương ứng )
=>tam giác AFE cân tại A
=>góc AFE=180 độ - góc A : 2
mặt khác ta có : tam giác ABC cân tại A
=>góc B =180 độ - góc A : 2
=>góc B = góc AFE
góc B và góc AFE ở vị trí đồng vị
=>EF song song BC
=>FBCE là hình thang
=>FB = EC
mà góc B =góc C (gt)
=>FBCE là hình thang cân
Ta có :FE song song BC
=>góc EBC = góc FEB (SLT)
mà góc FBE = góc EBC (gt)
=>góc FBE = góc FEB
=>tam giác BFE cân tại F
=>EF=FB (hai cạnh tương ứng ) (đcpcm)
ta lại có :
FB=FC(cmt)
=>EC=FE (đcpcm)
Bn nhớ k cho mình nha!!!!!!!!
Tớ nói với cậu chỗ tin nhắn rồi .... nếu không hiểu thì báo tớ,,,,, tớ ns tiếp cho
A B C E F
Ta có: \(\Delta ABC\) cân tại A (gt)
mà BE, CF lần lượt là tia phân giác của \(\widehat{ABC}\) và \(\widehat{ACB}\) (gt)
=> BE = CF
Xét \(\Delta ABE\) và \(\Delta ACF\) có:
BE = CF (cmt)
\(\widehat{ABE}=\widehat{ACF}\) \(\left(\widehat{ABC}=\widehat{ACB}=2\widehat{ABE}=2\widehat{ACF}\right)\)
AB = AC (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta ABE=\Delta ACF\left(c.g.c\right)\)
=> AE = AF (2 cạnh tương ứng)
=> \(\Delta AFE\) cân tại A
mà \(\Delta ABC\) cân tại A
nên \(\widehat{ABC}=\widehat{AFE}\)
mà chúng ở vị trí đồng vị
=> FE // BC (dấu hiệu nhận biết)
=> BFEC là hình thang
mà BE = CF
=> BFEC là hình thang cân
Ta có: EF // BC (cmt)
=> \(\widehat{EFC}=\widehat{FCB}\) (2 góc so le trong)
mà \(\widehat{FCB}=\widehat{ECF}\) (CF là tia phân giác \(\widehat{ECB}\))
=> \(\Delta FEC\) cân tại E (t/c tam giác cân)
=> FE = EC (Đ/N tam giác cân)
mà hình thang BFEC cân
=> BFEC là hình thang cân có đáy nhỏ bằng cạnh bên
a)Ta có: BE, CF là pgiac(gt)
=> ∠CBE=∠FEB\(=\dfrac{1}{2}\widehat{ABC}\)
\(\widehat{BCF}=\widehat{ECF}=\dfrac{1}{2}\widehat{ABC}\)
Mà ∠ABC=∠ACB(tam giác ABC cân tại A); ∠BCF=∠CBE(cmt)
Ta có: xét tam giác BFC và tam giác CEB có:
+∠FBC=∠ECB (tam cân)
+BC chung
+∠BCF=∠CBE(cmt)
=> tam giác BFC=tam giác CEB (g.c.g)
=>BF=CE(2 cạnh tương ứng)
Mà AB=AC(gt)
=>AB-BC=AC-CE
=>AF=AE
=>tam giác AFE cân tại A
=> \(\widehat{AFE}=\dfrac{1}{2}\left(180^o-\widehat{A}\right)\)
Mà ∠ABC=1/2(180-A)
=>∠AFE=∠ABC
Mà 2 góc ở vị trí đồng vị
=>EF//BC
=>BFEC là hình thang
Mà ∠CBF=BCE(tam giác cân)
=>BFEC là hình thang cân)
b) Do BFEC là hình thang cân
=>FE//BC; BF=CE(1)
=>góc FEB= góc EBC
Mà BE là pgiac góc B
=>góc FBE=FEB
=> tam giác FBE cân
=>BF=FE (2)
Từ(1);(2)=>BF=FE=EC