Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E I
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
C A B D K I
a)A +B + C =180độ
=>90 độ + 60 độ + C =180 độ
=> C =30 độ
Mà 30 độ < 60 độ <90 độ
=>C < B < A
=> AB < AC < BC
b)Xét tam giác vuông ABD(vuông ở A) và tam giác vuong KDB(vuông ở K)
Cạnh BK chung
ABD = DBK ( vì BK là phân giác góc B)
=> Tam giác ABD = Tam giác KDB(cạnh huyền - góc nhọn)
c) Vì BK là phân giác góc B => KBD = 1/2 B = 1/2 60 độ =30 độ
Mà C =30 độ
=>KBD = C = 30 độ
=> Tam giác BDC cân ở D
Vì tam giác ABD = Tam giác KDB nên BA=BK(2 cạnh tương ứng) (1)
Mà góc C=30 độ,A =90 độ
Áp dụng tính chất góc đối diện với cạnh 30 độ =1/2 cạnh huyền => AB =1/2 BC (2)
Từ (1) và (2) => BA=BK=1/2 BC
d)BA = BK = 1/2 BC => BC= 3 x 2=6
Xét tam giác ADI và tam giác KDC :
ADI = KDC(2 góc đối đình)
AD=DK( 2 cạnh tương ứng của tam giác ABD và tam giác KBD)
DAI=DKC ( 2 góc kề bù với 2 góc 90 độ)
=> Tam giác ADI = Tam giác KDC( góc - cạnh - góc)
=>AI = KC(2 cạnh tương ứng)
Mà KC=1/2 BC =>AI=CK=3 cm
Những chỗ có gạch trên đầu là kí hiệu của góc nhé(vì ở đây ko thấy kí hiệu mũ nên phải viết gạch ngang)
Nếu có chỗ nào không hiểu bạn cứ viết đi,mình giải thích cho
Dễ mà bn
x^2+2x+1+1
=(x+1)^2+1=0
Nên (x+1)^2=-1
Điều này vô lí bởi (x+1)^2 luôn >=0(đpcm)
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Bạn tự vẽ hình
Có A là trung điểm BD (gt)
=> AB = AD
Xét tam giác BDC có A là trung điểm BD (gt)
=> CA là trung tuyến tam giác BDC
Mà AC = AB (gt)
=> AC = 1/2 BD
=> tam giác BDC vuông tại C (định lý trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền đảo)
=> góc BCD = 90 độ
497
tick nha moi nguoi