K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A
mà AK là phân giác

nen K là trung điểm của BC

Xét ΔCBD có

A,K lần lượt là trung điểm của BD,BC

=>AK là đường trung bình

=>AK//CD 

b: Xét ΔCBD có

CA là trung tuyến

CA=BD/2

=>ΔBDC vuông tại C

=>góc BCD=90 độ

a: ΔABC cân tại A
mà AK là phân giác

nen K là trung điểm của BC

Xét ΔCBD có

A,K lần lượt là trung điểm của BD,BC

=>AK là đường trung bình

=>AK//CD 

b: Xét ΔCBD có

CA là trung tuyến

CA=BD/2

=>ΔBDC vuông tại C

=>góc BCD=90 độ

25 tháng 1 2018

Cho tam giác ABC cân tại A, trung trực của cạnh AC cắt CB tại điểm D (D nằm ngoài đoạn BC). Trên tia đối AD lấy E sao cho AE = BD. Chứng minh tam giác DCE cân - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

bn bấm vào dòng chữ màu xanh nhé !

có bài bạn đăng lên đó 

chúc các bn hok tốt ! ^^

vẽ hình ra chứ bn

a: ΔABC cân tại A
mà AK là phân giác

nen K là trung điểm của BC

Xét ΔCBD có

A,K lần lượt là trung điểm của BD,BC

=>AK là đường trung bình

=>AK//CD 

b: Xét ΔCBD có

CA là trung tuyến

CA=BD/2

=>ΔBDC vuông tại C

=>góc BCD=90 độ

a: ΔABC cân tại A

mà AK là đường phân giác

nên AK vuông góc BC và K là trung điểm của BC

Xét ΔDCB có

K,A lần lượt là trung điểm của BC,BD

=>KA là đường trung bình

=>KA//CD và KA=CD/2

b: KA//CD

KA vuông góc BC

=>DC vuông góc CB

=>góc DCB=90 độ

21 tháng 5 2019

A B C D O E 1 1

a) \(\Delta ABC\)cân tại A có \(\widehat{BAC}=40^o\)nên \(\widehat{ABC}=\widehat{ACB}=70^o\)

gọi giao điểm của AB với đường trung trực của nó là O

CM : \(\Delta AOD=\Delta BOD\left(c.g.c\right)\)\(\Rightarrow\)\(\Delta ADB\)cân tại D

\(\Rightarrow\widehat{ABD}=\widehat{BAD}=70^o\)\(AD=BD\)( 1 )

\(\Rightarrow\widehat{A_1}=\widehat{C_1}=180^o-70^o=110^o\)

Xét  \(\Delta BEA\)và  \(\Delta CDA\)có :

AE = CD ( gt ) ; \(\widehat{A_1}=\widehat{C_1}\)( cmt ) ; AB = AC ( gt )

\(\Rightarrow\Delta BAE=\Delta ACD\left(c.g.c\right)\)\(\Rightarrow BE=AD\)( 2 )

b) Từ ( 1 ) và ( 2 ) suy ra BE = BD nên \(\Delta BED\)cân tại B

Mà \(\widehat{ADC}=180^o-2.70^o=40^o\)

\(\Rightarrow\widehat{BED}=\widehat{EDB}=40^o\)và \(\widehat{EBD}=100^o\)