Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K I 1 2
a.Vì tam giác ABC cân tại A nên AH vừa là đường cao vừa là trung tuyến
=> HB=HC
b. Vì HB=HC=10:2=5(cm)
Áp dụng định lý Pi-ta -go vào tam giác AHB có
\(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
c. Xét 2 tam giác AHK và tam giác AHI có:
Vì AH là đường cao mà tam giác ABC cân tại A nên AH cx là đường phân giác:
nên ta có: \(\widehat{A}_1=\widehat{A_2}\)
AH chung
=> tam giác AHK=tam giác AHI(c.g.c)
=>HI=HK(2 cạnh tương ứng )
d. Xl nha câu d quên cách ch/m rồi..
a: XétΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó:ΔAHB=ΔAHC
Suy ra: HB=HC
b: \(BH=CH=\dfrac{BC}{2}=5\left(cm\right)\)
\(AH=\sqrt{13^2-5^2}=12\left(cm\right)\)
c: Xét ΔAKH vuông tại K và ΔAIH vuông tại I có
AH chung
\(\widehat{KAH}=\widehat{IAH}\)
Do đó:ΔAKH=ΔAIH
Suy ra: AK=AI
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
a: XétΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó:ΔAHB=ΔAHC
Suy ra: HB=HC
b: \(BH=CH=\dfrac{BC}{2}=5\left(cm\right)\)
\(AH=\sqrt{13^2-5^2}=12\left(cm\right)\)
c: Xét ΔAKH vuông tại K và ΔAIH vuông tại I có
AH chung
\(\widehat{KAH}=\widehat{IAH}\)
Do đó:ΔAKH=ΔAIH
Suy ra: AK=AI