K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

27 tháng 11 2017

a. Do AD là phân giác BAC

=> BAD=CAD=1/2BAC=1/2.120=60*

Xét tam giác AED có 

EAD+EDA+AED=180*

60*+EDA+90*=180*

=> EDA=30*

Xét tam giác EAD và tam giác FAD có

AED=AFD=90*

AD chung

EAD=FAD=60*

=> tam giác EAD = tam giác FAD(ch-gn)

=> ED=FD; EDA=FDA=30*

Ta có EDF=EDA+FDA=2EDA=2.30*=60*

Từ ED=FD => tam giác EDF cân tại D

Xét tam giác cân DEF có EDF=60*

=> tam giác DEF là tam giác đều

9 tháng 8 2017

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\widehat{A}=90^o,\widehat{C}=30^o\)

nên \(\widehat{B}=180^o-\widehat{A}-\widehat{C}\)

\(\widehat{B}=180-90-30=60^o\)

Vì góc C đối xứng AB, Góc B đối xứng với AC mà góc B >góc C

nên AC>AB

\(\widehat{BAH}=180-60-90=30\)

Xét \(\Delta ABH\)Và \(\Delta AIH\)

Có:\(\widehat{AHI}=\widehat{AHB}=90^o\)

\(HB=HI\left(gt\right)\)

\(AH\)chung

\(\Rightarrow\)=nhau theo trường hợp (c.g.c)

suy ra \(\widehat{IAH}=\widehat{BAH}=30^o\)(2 góc tương ứng)

Mà \(\widehat{IAH}+\widehat{BAH}=30+30=60^o\)

\(\Delta\)ABI có 2 góc 60 độ là tam giác đều

câu c hình như bị sai

9 tháng 8 2017

A C B 60 30 H I

17 tháng 12 2016

Bài 1:

A B C E 50

a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)

mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)

nên từ (1) và (2) suy ra góc AEB = ABE

mà 2 góc này là 2 góc đáy

=> ΔABE là tam giác cân

b) Do góc ABE = EBC = 50:2 = 25 độ

nên góc ABE = AEB = 25 độ

Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )

=> 25 + 25 + BAE = 180

=> BAE = 130 độ.

Bài 2:

A B C D E

a) Vì ΔABC cân tại A nên góc ABC = ACB

mà góc ABC + ACB = 180 - BAC

=> góc ABC = 180 - BAC /2 (1)

Do AD = AE nên ΔADE cân tại A

được góc ADE = AED

mà góc ADE + AED = 180 - BAC

=> ADE = 180 - BAC/2 (2)

Từ (1) và (2) suy ra góc ABC = ADE

mà 2 góc này ở vị trí đồng vị => DE//BC

b) Ta có: AD + DB = AB

AE + EC = AC

mà AD = AE ( gt); AB = AC (theo câu a)

=> DB = EC

Xét ΔMBD và ΔMCE có:

DB = CE ( chứng minh trên )

Góc ABC = ACB ( theo câu a )

MB = MC ( suy từ gt)

=> ΔMBD = ΔMCE ( c.g.c )

c) Lại do ΔMBD = ΔMCE (theo câu b)

=> MD = ME (2 cạnh tương ứng)

Xét ΔAMD và ΔAME có:

AD = AE (gt)

AM chung

MD = ME ( cm trên )

=> ΔAMD = ΔAME ( c.c.c )

Chúc bạn học tốtNgân Phùngvui

 

17 tháng 12 2016

Sửa lại bài 3:

x A B C m 1

Giải:

Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)

Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)

\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)

\(\Rightarrow\widehat{A_1}=\widehat{C}\)

Mà 2 góc trên ở vị trí so le trong nên Am // BC

Vậy Am // BC