Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình
Có A là trung điểm BD (gt)
=> AB = AD
Xét tam giác BDC có A là trung điểm BD (gt)
=> CA là trung tuyến tam giác BDC
Mà AC = AB (gt)
=> AC = 1/2 BD
=> tam giác BDC vuông tại C (định lý trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền đảo)
=> góc BCD = 90 độ
A B C D E I
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
a) theo đl pytago:
AB^2+AC^2=BC^2
=> AC^2=BC^2-AB^2
=>AC^2=144
=>AC=căn 144 = 12cm
Vì BC>AC>AB=>góc A > góc B > góc C
Xet tam giac ABC co goc A = 90 do (gt)
Ta co AB^2 + AC^2 = BC^2 (dinh ly Pi-ta-go)
=>AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144
=>AC = can bac 2 cua 144 = 12
Vi BC > AC > AB => goc A > goc B > goc C
Xet tam giac ABC co:
BA = BD (gt) (1)
goc BAE = goc BDE = 90 do (gt) (2)
BE (canh chung) (3)
Tu (1), (2), (3) => tam giac EBA = tam giac EBD (canh huyen-canh goc vuong)
Cau hoi tiep theo tui bo tay.com
324 tớ gặp rồi bạn tick nhé
A B D C