Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
b) Từ tam giác vuông AHB = tam giác vuông AHC
=> ^BAH = ^CAH ( hai góc tương ứng )
Xét tam giác vuông AHE và tam giác vuông AHF có :
AH chung
^BAH = ^CAH ( cmt )
=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )
=> HE = HF ( hai cạnh tương ứng )
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D K H F E
Kẻ DK \(\perp\) BH
Ta có: DK \(\perp\)BH
AC \(\perp\) BH
\(\Rightarrow\)DK // AC
\(\Rightarrow\) \(\widehat{BDK}=\widehat{C}\) (hai góc đồng vị) (1)
Vì \(\Delta ABC\) cân tại A \(\Rightarrow\) \(\widehat{DBF}=\widehat{C}\) (2)
Từ (1) và (2) suy ra: \(\widehat{BDK}=\widehat{DBF}\)
Xét hai tam giác vuông BDK và DBF có:
BD: cạnh huyền chung
\(\widehat{BDK}=\widehat{DBF}\) (cmt)
Vậy: \(\Delta BDK=\Delta DBF\left(ch-gn\right)\)
Suy ra: BK = DF (hai cạnh tương ứng) (3)
Ta lại có DE // KH, DK // EH nên chứng minh được: DE = KH (4)
Từ (3) và (4) suy ra: DE + DF = KH + BK = BH (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!
A B C H E F
a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:
\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)
=> \(BH=HC\)
b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:
\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)
=> \(HE=HF\) => Tam giác HEF cân tại H
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác BAH và tam giác CAH, có:
AH: cạnh chung
AB = AC ( tam giác ABC cân tại A )
góc AHB = góc AHC ( = 90 độ )
-> tam giác BAH = tam giác CAH ( ch-cgv )
-> HB = HC ( 2 cạnh tương ứng )
b) Xét tam giác FBH và tam giác ECH, có:
HB = HC ( cmt )
góc D = góc E ( = 90 độ )
góc B = góc C ( tam giác ABC cân tại A )
-> tam giác FBH = tam giác ECH ( ch-gn )
-> HF = HE ( 2 cạnh tương ứng )
-> tam giác HEF là tam giác cân tại H
k cho mình nha mỏi tay quá !!! thanks