\(\perp\)AC, CE\(\perp\)AB....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

A B C D E H K 1 2

a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:

\(\widehat{A}:chung\)

\(\Delta ABC\)cân => AB = AC ( ĐL )

\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)

 => \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)

b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )

nên \(\Delta AED\)là tam giác cân ( ĐPCM )

BTVN đây , nhờ mọi người giải giùm:1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:a,\(\Delta\)ABD = \(\Delta\)ACEb, \(\Delta AED\)cânc, AH là đường trung trực của ED.d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)= \(\widehat{DKC}\)2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy...
Đọc tiếp

BTVN đây , nhờ mọi người giải giùm:

1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:

a,\(\Delta\)ABD = \(\Delta\)ACE

b, \(\Delta AED\)cân

c, AH là đường trung trực của ED.

d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)\(\widehat{DKC}\)

2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH, EK \(\perp\)BC. CMR: a, HB=CK

b, \(\widehat{AHB}\)\(\widehat{AKC}\)

c,HK // DE

d. \(\Delta AHE\)\(\Delta AKD\)

3/ Cho \(\widehat{xOy}\)và tia phân giác Ot. Trên tia Ot lấy điểm M, trên các tia Õ và Oy lần lượt lấy các điểm A và B sao cho OA=OB. Gọi H là giao điểm của Ab và Ot.CMR:

a, MA = Mb

b, OM là trung trực của AB

c, Cho AB = 6cm, OA=5cm. Tính OH

( Ko gấp lắm nên từ từ giải rõ ràng, đúng kết quả nhé)

 

3
11 tháng 2 2018

1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC

A B C D E H K

a) Xét tam giác ABD và tam giác ACE có:

\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)

b) AE=AD(vì tam giác ABD=tam giác ACE 

=> tam giác AED cân tại A 

c) Xem lại đề

d) Xét tam giác BCK có:

\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)

=> CD là đường trung trực của BK

=> BC=CK

=> tam giác BCK cân tại C

=>\(\widehat{CBK}=\widehat{CKB}\)

Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)

=> góc ECB= góc CKB 

11 tháng 2 2018

3) Đề là: 

Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH: 
a/ MA = MB 
b/ OM là đường trung trực của AB 
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ?  (bn viết khó hiểu qá nên mk xem lại trong vở)

Tự vẽ hình!

a/ Xét tam giác OAM và tam giác OBM, có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b/ Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH, có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

=>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2)

=> MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c/ Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H  có: OA2 = OH2 + AH2 ( định lí Py-ta-go)

=> 52 = OH2 + 32 

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

\(\Rightarrow OH=\sqrt{16}\)

\(\Rightarrow OH=4cm\)

18 tháng 12 2016

A B C E D O

a)Xét ΔADB và ΔAEC có:

\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)

\(\widehat{A}\) : góc chung

=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)

=> BD=CE

b) Vì ΔADB=ΔAEC(cmt)

=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)

Có: AB=AE+BE

AC=AD+DC

Mà: AB=AC(gt); AE=AD(cmt)

=>BE=DC

Xét ΔOEB và ΔODC có:

\(\widehat{OEB}=\widehat{ODC}=90^o\)

BE=DC(cmt)

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

=> ΔOEB=ΔODC(g.c.g)

c) Vì: ΔOEB=ΔODC (cmt)

=> OB=OC

Xét ΔAOB và ΔAOC có:

AB=AC(gt)

\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)

OB=OC(cmt)

=> ΔAOB=ΔAOC(c.g.c)

=> \(\widehat{OAB}=\widehat{OAC}\)

=> AO là tia pg của \(\widehat{BAC}\)

3 tháng 2 2017

E C B A D I

A)Xét tam giác ADB và tam giác AEC có 

\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)

\(AB=AC\left(GT\right)\)

\(\widehat{A}chung\)

Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)

=> BD=CE( 2 CẠNH T/Ư)

B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)

=> Tam giác AED là tam giác cân 

C) câu c) mk chư bt lm 

18 tháng 2 2017

c ) +)Xét tam giác AEI và tam giác ADI có :

                 \(\widehat{E}=\widehat{D}\left(=90\right)^o\)

                  AE = AD ( cmt )

                  AI chung 

=> Tam giác AEI = Tam giác ADI ( ch - cgv)

=> Góc DAI = Góc EAI ( hai góc tương ứng ) 

Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )

+) Gọi điểm H là giao của BC và AI .

Xét tam giác ABC có :

       BD là đường cao thứ nhất

       CE là đường cao thứ hai 

=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )

=> \(Ah⊥BC\)

Mà I thuộc AH =>  \(AI⊥BC\)