K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

a, Xét tam giác HBA vuông tại H có:

\(AB^2=AH^2+BH^2\) (định lí py ta go)

hay \(100=AH^2+36\)

=> \(AH^2=64\)

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

15 tháng 3 2018

A B C H 6 10 D 6 10 E

a: AH=8cm

b: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

c: Xét ΔADH và ΔAEH có

AD=AE

\(\widehat{DAH}=\widehat{EAH}\)

AH chung

Do đó ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

d: Ta có:AD=AE

HD=HE

Do đó:AH là đường trung trực của DE

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

18 tháng 3 2022

undefinedtham khao

18 tháng 3 2022

undefined

1: AH=8cm

2: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

4: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

10 tháng 3 2022

làm sao tính đc AH =8cm

 

15 tháng 3 2022

1, Theo định lí Pytago tam giác AHB vuông tại H 

\(AH=\sqrt{AB^2-BH^2}=8cm\)

2, Xét tam giác ABH và tam giác ACH có 

AB = AC ; AH _ chung 

Vậy tam giác ABH = tam giác ACH (ch-cgv) 

3, Vì tam giác ABC cân tại A có AH là đường cao 

đồng thời là phân giác 

Lại có DB = CE ; AB = AC 

=> AD = AE 

Xét tam giác ADH và tam giác AEH có 

AD = AE ( cmt ) ; AH _ chung ; ^DAH = ^EAH 

Vậy tam giác ADH = tam giác AEH (c.g.c) 

=> DH = HE ( 2 cạnh tương ứng ) 

Vậy tam giác HDE cân tại H 

4, Ta có AD/AB = AE/AC => DE//BC