Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác AHB đồng dạng với tam giác HCI ( g.g ) ( Bạn tự chứng minh )
\(\Rightarrow\frac{AH}{HI}=\frac{BH}{CI}\Rightarrow\frac{AH}{OH}=\frac{BC}{CI}\)
Suy ra tam giác BIC đồng dạng với tam giác AOH ( đpcm )
b) Qua H kẻ HE // BI
Ta cũng dễ chứng minh được OE // BC suy ra \(OE\perp AH\)
Suy ra tam giác AHE có trực tâm là O
Suy ra AO vuông góc với BI ( đpcm )
Làm ngắn thế Hiếu!
Bạn tự vẽ hình!!!
a) Hai tam giác vuông AHC và HIC có chung góc C nên chúng đồng dạng
\(\Delta AHC\approx\Delta HIC\Rightarrow\frac{HA}{HI}=\frac{HC}{IC}\)
\(\frac{HA}{2HO}=\frac{BC}{2IC}\Rightarrow\frac{HA}{HO}=\frac{BC}{IC}\left(1\right)\)
Mặt khác: \(\widehat{AHO}=\widehat{ICB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\Delta BIC\approx\Delta AOH\left(c-g-c\right)\)
b) Gọi D là giao điểm của AH và BI , E là giao điểm của AO và BI
\(\Delta BIC\approx\Delta AOH\left(cmt\right)\Rightarrow\widehat{IBH}=\widehat{HAO}\)
Ta lại có: góc BDH = góc ADE (dđ) => IBH + BDH = HAO + ADE
Tam giác BHD vuông nên IBH + BDH=90 độ => HAO + ADE =90 độ => góc AED = 90 độ hay \(AO\perp BI\)
a: Xét ΔAHI vuông tại H và ΔACH vuông tại H có
góc HAI chung
=>ΔAHI đồng dạng với ΔACH
Xét ΔAHI vuông tại Ivà ΔHCI vuông tại I có
góc HAI=góc CHI
=>ΔAHI đồng dạng với ΔHCI
b: Xet ΔIHC có IM/IH=IK/IC
nên MK//HC
=>MK vuông góc AH
Xet ΔAHK có
KM,HI là đường cao
KM cắt HI tại M
=>M là trực tâm
=>AM vuông góc HK tại N
=>MN là đường cao của ΔHMK
a: Vì ΔAHB đồng dạng với ΔHCI
nên AH/HI=BH/CI
=>AH/DH=BC/CI
=>ΔBCI đồng dạng với ΔAHD
b: Kẻ HK//BI
=>K là trung điểm của IC
Xét ΔIHC có ID/IH=IK/IC
nên DK//HC
=>DK vuông góc với AH
Xét ΔAHK có
HI,KD là các đường cao
HI cắt KD tại D
Do đó: D là trực tâm
=>AD vuông góc với HK
=>AD vuông góc với BI