K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K cso

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
BH=CK

Do đó: ΔABH=ΔACK

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔADB=ΔAEC

=>AD=AE
=>ΔADE cân tại A

b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔAHB=ΔAKC

=>BH=CK

Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)

=>ΔAMB=ΔANC

=>BM=CN

d: Xét ΔADE có AH/AD=AK/AE

nên HK//DE

=>HK//BC

1 tháng 3 2020

A D B C E H K I

Vì tam giác ABC cân tại Asuy ra AB=AC, góc B=góc C

mà góc ABC + góc ABD = 1800, góc ACB +  góc ACE = 1800

suy ra góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE

có AB=AC (CMT); góc ABD = góc ACE; BD=CE (GT)

suy ra tam giác ABD =  tam giác ACE (c.g.c)    (*)

suy ra góc DAB=góc EAC (hai góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông ACK

có AB=AC (CMT), góc DAB=góc EAC (CMT)

suy ra tam giác  AHB = tam giác ACK ( cạnh huyền-góc nhọn)  (1)

b) Tư (1) suy ra AH=AK (hai cạnh tương ứng)  (2)

Xét tam giác vuông AHI và tam giác vuông AKI

có AI chung, AH=AK (CMT)

suy ra  tam giác  AHI = tam giác AKI (cạnh huyền-cạnh góc vuông)

suy ra góc HAI=góc KAI

suy ra AI là tia phân giác của góc DAE

c) Từ (2) suy ra tam giác AHK cân tại A

suy ra góc AHK = góc AKH  (3)

tam giác AHK có góc HAK + góc AHK + góc AKH=1800 (4)

 Từ (3) và (4) suy ra góc AHK = (1800- góc AHK ) :2   (5)

Từ (*) suy ra tam giác ADE cân tại A

suy ra góc ADE = góc AED  (6)

tam giác ADE có góc EAD + góc ADE + góc AÈD=1800 (7)

 Từ (6) và (7) suy ra góc ADE = (1800- góc DAE ) :2  (8)

Từ (5) và (8) suy ra góc ADE = góc AHK

mà góc ADE đồng vị với góc AHK

suy ra HK//DE

29 tháng 2 2020

Phần a là chứng minh 2 tam giác ABH = ACK à bạn ?

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

18 tháng 9 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔABH và ΔACK, ta có:

AB = AC (gt)

∠(AHB) =∠(AKC) =90o

BH=CK ( chứng minh trên)

Suy ra: ΔABH= ΔACK (cạnh huyền– cạnh góc vuông)

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

 

a: 

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

b: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

c: Xét ΔADE có AH/AD=AK/AE

nên HK//DE

=>HK//BC

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I