K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: HB=HC=6cm

\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đo: ΔABM=ΔACN

Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔBDM=ΔCEN

c: Xét ΔKBC có

KH là đường cao

KH là đường trung tuyến

Do đó:ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

=>\(\widehat{KCB}=\widehat{DBM}\)

=>\(\widehat{KCB}=\widehat{ECN}\)

=>\(\widehat{KCB}+\widehat{BCE}=180^0\)

=>K,E,C thẳng hàng

7 tháng 1 2019

a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

Hay \(\widehat{ABD}=\widehat{ACE}\)

Theo định lý Cos ta có

\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)

\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)

Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE

Nên AD = AE hay tam giác ADE cân tại A

b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)

Nên góc KCE = góc DBH

Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)

Xét tam giác HBA và tam giác ACK vuông có :

+ góc HBA = góc KCA

+ AB = AC

\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)

7 tháng 1 2019

c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)

\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)

\(\widehat{HBA}=\widehat{ACK}\)

\(\widehat{ABC}=\widehat{ACB}\)

Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O 

d) Xét tam giác AMB và tam giác AMC 

+ AM chung 

+ BM = MC (gt)

+ AB = AC (gt)

Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c

Và hai góc BAM = góc CAM 

Hay AM là tia phân giác của góc BAC

Xét tam giác AOB và tam giác ACO

+ AB = AC (gt)

+ OB = OC (cmt )

+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)

Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c

Và góc BAO = góc CAO

Hay AO là phân giác của góc BAC

Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

BTVN đây , nhờ mọi người giải giùm:1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:a,\(\Delta\)ABD = \(\Delta\)ACEb, \(\Delta AED\)cânc, AH là đường trung trực của ED.d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)= \(\widehat{DKC}\)2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy...
Đọc tiếp

BTVN đây , nhờ mọi người giải giùm:

1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:

a,\(\Delta\)ABD = \(\Delta\)ACE

b, \(\Delta AED\)cân

c, AH là đường trung trực của ED.

d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)\(\widehat{DKC}\)

2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH, EK \(\perp\)BC. CMR: a, HB=CK

b, \(\widehat{AHB}\)\(\widehat{AKC}\)

c,HK // DE

d. \(\Delta AHE\)\(\Delta AKD\)

3/ Cho \(\widehat{xOy}\)và tia phân giác Ot. Trên tia Ot lấy điểm M, trên các tia Õ và Oy lần lượt lấy các điểm A và B sao cho OA=OB. Gọi H là giao điểm của Ab và Ot.CMR:

a, MA = Mb

b, OM là trung trực của AB

c, Cho AB = 6cm, OA=5cm. Tính OH

( Ko gấp lắm nên từ từ giải rõ ràng, đúng kết quả nhé)

 

3
11 tháng 2 2018

1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC

A B C D E H K

a) Xét tam giác ABD và tam giác ACE có:

\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)

b) AE=AD(vì tam giác ABD=tam giác ACE 

=> tam giác AED cân tại A 

c) Xem lại đề

d) Xét tam giác BCK có:

\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)

=> CD là đường trung trực của BK

=> BC=CK

=> tam giác BCK cân tại C

=>\(\widehat{CBK}=\widehat{CKB}\)

Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)

=> góc ECB= góc CKB 

11 tháng 2 2018

3) Đề là: 

Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH: 
a/ MA = MB 
b/ OM là đường trung trực của AB 
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ?  (bn viết khó hiểu qá nên mk xem lại trong vở)

Tự vẽ hình!

a/ Xét tam giác OAM và tam giác OBM, có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b/ Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH, có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

=>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2)

=> MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c/ Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H  có: OA2 = OH2 + AH2 ( định lí Py-ta-go)

=> 52 = OH2 + 32 

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

\(\Rightarrow OH=\sqrt{16}\)

\(\Rightarrow OH=4cm\)

20 tháng 4 2017

sao vẽ dc hình z Thành Đạt

14 tháng 4 2017

Hình học lớp 7Hình học lớp 7Hình học lớp 7

nhớ tick

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0