K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACE có 

\(\widehat{BAD}=\widehat{CAE}\)

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHDB=ΔKEC

Suy ra: BH=CK

c: Ta có: ΔHDB=ΔKEC
nên \(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{IBC}=\widehat{HBD}\)

và \(\widehat{ICB}=\widehat{KCE}\)

nên \(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC
BI=CI

AI chung

DO đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân

a: 

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

b: 

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

c: góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE
nên góc OBC=góc OCB

=>ΔOBC cân tại O

19 tháng 7 2020

A B C D E 2 2 1 1 M H K O

A) 

TA CÓ 

\(\widehat{B_1}+\widehat{B_2}=180^o\left(kb\right)\)

\(\widehat{C_1}+\widehat{C_2}=180^o\left(kb\right)\)

mà \(\widehat{B_2}=\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

XÉT \(\Delta\)DAB VÀ \(\Delta EAC\)

\(AB=AC\left(GT\right)\)

\(\widehat{B_1}=\widehat{C_1}\left(CMT\right)\)

\(DB=EC\left(GT\right)\)

=>\(\Delta DAB=\Delta EAC\left(C-G-C\right)\)

\(\Rightarrow DA=EA\)

=>\(\Delta ADE\)CÂN TẠI A

B) VÌ \(\Delta ADE\)CÂn TẠI A

\(\Rightarrow\widehat{D}=\widehat{E}\)

XÉT \(\Delta DHB\)\(\Delta EKC\)CÓ 

\(\widehat{DHB}=\widehat{EKC}=90^o\)

\(DB=EC\left(GT\right)\)

\(\widehat{D}=\widehat{E}\left(CMT\right)\)

=>\(\Delta DHB=\Delta EKC\left(CH-GN\right)\)

\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

GIẢ SỬ GỌI O LÀ GIAO ĐIỂM CỦA AM,BH,CK

TA CÓ

 ​\(\widehat{HBD}=\widehat{CBO}\left(Đ^2\right)\)

\(\widehat{ECK}=\widehat{BCO}\left(Đ^2\right)\)

MÀ \(\widehat{HBD}=\widehat{ECK}\)

=>\(\widehat{CBO}=\widehat{BCO}\)

=> \(\Delta COB\)CÂN TẠI O

MÀ BO LÀ TIA ĐỐI CỦA BH 

      OC LÀ TIA ĐỐI CỦA CK

      OM LÀ TIA ĐỐI CỦA MA

=> \(AM,BH,CK\)ĐỒNG QUY TẠI MỘT ĐIỂM

19 tháng 7 2020

đố các bn mình có mấy giấy khen thi cấp tĩnh ?

mình đoán là 1 giấy khen thi cấp tĩnh 

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I

14 tháng 7 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Do tam giác ABC cân tại A nên ∠ABC = ∠ACB (1)

Lại có; ∠ABC + ∠ABD = 180º ( hai góc kề bù) (2)

∠ACB + ∠ACE = 180º ( hai góc kề bù) (3)

Từ (1); (2); (3) suy ra: ∠ABD = ∠ACE

+) Xét ΔABD và ΔACE có:

∠DAB = ∠EAC ( giả thiết)

AB = AC (vì tam giác ABC cân tại A)

∠ABD = ∠ACE ( chứng minh trên )

⇒ ΔABD = ΔACE (g.c.g)

⇒ BD = CE ( hai cạnh tương ứng)..

16 tháng 2 2022

kkkkkkkkkkkkkkkk

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE