K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

a. 2AB = AM + AN 
=> 2AB = AM + AC + CN 
=> 2AB = AM + AB + CN 
=> AB = AM + CN 
=> AM + BM = AM + CN 
=> BM = CN 

b. BC cat MN tai F 
ve~ NE // BC ( E thuoc AB keo dai ) 
suy ra gocABC = gocAEN 
gocANE = gocACB 
ma gocABC = gocACB ( tam giac ABC can tai A ) 
=> hinh thang BCNE la hinh thang can 
=> CN = BE 
ma CN = BM ( cm cau a ) 
=> BM = BE 
BF // NE 
=> BF la duong trung binh tam giac MNE => MF = FN 
c. Xet tam giac KMN co 
KM vuong goc MN tai F 
MF = FN 
=> tam giac KMN can tai K 
=> MK = NK 
lai co KB = KC ( K thuoc phan giac goc BAC ) 
BM = CN ( cm cau a ) 
=> tam giac BKM = tam giac CKN (c.c.c) 
=> gocKCN = gocKBM ( = gocABK ) 

gocABC=gocACB(tam giac ABC can) 
gocKBC=gocKCB(tam giac KBC can) 
=> gocABC + gocKBC = gocACB + gocKCB 
=> gocABK = gocACK 
ma gocABK = gocKCN 
=> gocKCN = gocACK 
ma gocKCN + gocACK = 180* 
=> gocKCN = 90* => KC vuong goc AN

5 tháng 3 2020

Vẽ hình đi bạn

27 tháng 2 2019

ai làm nhanh nhất tui tk

13 tháng 7 2020

a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)

=> DM=NE

b) Ta có

\(\Delta MDI\perp D\)=> DMI+MID=90 độ

\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ

mà MID=NEI đối đỉnh

=> DMI=ENI

\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)

=> IM=ỊN

=> BC cắt MN tại I là trung Điểm của MN

c) Gọi H là chân đường zuông góc kẻ từ A xuống BC

=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )

=> góc HAB= góc HAC

Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I

=> tam giác OAB= tam giác OAC (c-g-c)(1)

=> góc OBA = góc OCA ; OC=OB

tam giác OBM= tam giác OCN (c-g-c)

=> góc OBM=góc OCN (2)

từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC

=> O luôn cố đinhkj

=> DPCM

31 tháng 3 2016

A B C E N I D M O 1 2 2 1 2 3 1 3 1

a) ta có tam giác abc cân tại A suy ra B=C3

C3=C1(2 góc đđ) suy ra B=C1

xét 2 tam giác vuông MBD và NCE

B=C1(cmt)

BD=CE(gt)

D1=E=90 độ

suy ra tam giácMBD=NCE(g.c.g)

suy ra MD=NE

31 tháng 3 2016

b) theo câu a, ta có:MD=NE

I1=I2(2 góc đđ)

DMI=90-I1

ENI=90-I2

suy ra DMI=ENI
xét tam giác MDI và tam giác NIE

MD=NE( theo câu a)

DMI=ENI(cmt)

MDI=NEI=90

suy ra tam giác MDI=NIE(g.c.g)

suy ra IM=IN suy ra I là trung điểm của MN

17 tháng 5 2015

câu c nè, tam giác ahb=tam giác ahc(chứng minh trên) suy ra bh=ch(tc) suy ra dh là trung tuyến

k là trung điểm của ac(gt) suy ra ek là trung tuyến

suy ra cg cũng là trung tuyến

suy ra cg,dh,ek cùng đi qua 1 điểm

11 tháng 4 2018

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      \(AC^2+AB^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

\(\Rightarrow AC=12\left(cm\right)\)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\)  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

\(\Rightarrow\Delta BEH=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BH=BC\) hay tam giác HBC cân tại B.

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      AC2+AB2=BC2

⇒AC2=BC2−AB2=152−92=144

⇒AC=12(cm)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

⇒ΔABD=ΔEBD  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

⇒ΔBEH=ΔBAC  (Cạnh góc vuông và góc nhọn kề)

⇒BH=BC hay tam giác HBC cân tại B.

29 tháng 11 2016

B A C N M 1 2 3 4

Giải:
a) Xét \(\Delta BAM,\Delta NCM\) có:

\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_2}=\widehat{M_4}\) ( đối đỉnh )

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta BAM=\Delta NCM\left(c-g-c\right)\)

\(\Rightarrow CN=AB\) ( cạnh t/ứng )

\(\Rightarrow\widehat{BAM}=\widehat{NCM}\) ( cạnh t/ứng )

\(\widehat{BAM}=90^o\Rightarrow\widehat{NCM}=90^o\) hay \(CN\perp AC\)

b) Xét \(\Delta AMN=\Delta CMB\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_1}=\widehat{M_3}\) ( đối đỉnh )

\(BM=MN\left(gt\right)\)

\(\Rightarrow\Delta AMN=\Delta CMB\left(c-g-c\right)\)

\(\Rightarrow\widehat{BCA}=\widehat{CAN}\) ( cạnh t/ứng )

Mà 2 góc trên nằm ở vị trí so le trong nên AN // BC

Vậy...


 

29 tháng 11 2016

cảm ơn bạn