K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có IK//AC

nên IK/AC=BI/AB

mà AC=AB

nên IK=IB

hay ΔIKB cân tại I

b: Xét ΔIKN và ΔMCN có 

\(\widehat{NIK}=\widehat{NMC}\)

IK=MC

\(\widehat{IKN}=\widehat{MCN}\)

Do đó; ΔIKN=ΔMCN

Suy ra: IK=CM; KN=NC

c: 2IN+CM=IM+CM>IC

mà IC=BM

nên 2IN+CM>BM

17 tháng 8 2016

Mình chỉ giải được câu a thôi nhé 

ik//ac=>góc ACB=góc IKB(1)

Do tam giác ABC cân tại A =>góc ABC=góc ACB(2)

từ (1) và (2)=>góc IBK= góc ABC hay góc IKB=góc IBK=>tam giác IBK cân tại I

18 tháng 2 2020

Ta có : Tam giác ABM cân tại B

=>MAB^=AMB^ (1)

Lại có : IMB^=IAB^=90* (2)

Từ 1 và 2 : +)IAM^=90*-MAB^

                  +)IMA^ =90*-AMB^

                  =>IAM^=IMA^

=>Tam giác IAM cân tại I

=>IA=iM

18 tháng 2 2020

A B C M I N K P 1 2
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT) 
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o 
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
  BI chung
  BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)

b) Ta có : ∠BAC + ∠NAC = 180(2 góc kề bù)
    Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180
=> ∠NAC = 180- 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90(ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I(Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
      MC + BM = BC 
     BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

20 tháng 3 2022

`Answer:`

undefined

a. Theo giả thiết: EI//AF

`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)

`=>\triangleEBI` cân ở `E`

`=>EB=EI`

b. Theo giải thiết: BE=CF=>EI=CF`

Xét `\triangleOEI` và `\triangleOCF:`

`EI=CF`

`\hat{OEI}=\hat{OFC}` 

`\hat{OIE}=\hat{OCF}`

`=>\triangleOEI=\triangleOFC(g.c.g)`

`=>OE=OF`

c. Ta có: `KB⊥AB` và `KC⊥AC`

`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`

`=>KB=KC`

Mà `BE=CF`

`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`

`=>KE=KF`

`=>\triangleEKF` cân ở `K`

Mà theo phần b. `OE=OF=>O` là trung điểm `EF`

`=>OK⊥EF`