Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
https://h.vn/hoi-dap/question/168197.html
tham khảo nhé bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
A M N B C F H D E I
Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(
a) Xét △AHB và △AHC có:
AHB = AHC (= 90o)
AH: chung
AB = AC (△ABC cân)
=> △AHB = △AHC (ch-cgv)
b) Xét △ADM và △ADH có:
ADM = ADH (= 90o)
DM = DH (gt)
AD: chung
=> △ADM = △ADH (2cgv)
=> AM = AH (2 cạnh tương ứng) (1)
Xét △ANE và △AHE có:
AEH = AEN (= 90o)
EH = EN (gt)
AE: chung
=> △ANE = △AHE (2cgv)
=> AN = AH (hai cạnh tương ứng) (2)
Từ (1) và (2) => AM = AN => △AMN cân tại A
Ta có: MAN = MAB + BAH + HAC + CAN
Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)
=> MAN = 2BAH + 2 HAC
=> MAN = 2BAC
=> BAC = 1/2MAN
c) Ta có: HAD = HAE (△AHB = △AHC)
Mà HAD = DAM, HAE = EAN
=> HAD + DAM = HAE + EAN
=> HAM = HAN
Gọi giao điểm AH và MN là F
Xét △AFM và △AFN có:
AF: chung
FAM = FAN (cmt)
AM = AN (cmt)
=> △AFM = △AFN (c.g.c)
=> AFM = AFN (2 góc tương ứng)
Mà AFM + AFN = 180o => AFM = AFN = 90o
=> AH vuông góc MN (1)
Gọi giao điểm của DE và AH là I
Xét △ADH và △AEH có:
ADH = AEH (= 90o)
AH: chung
HAD = HAE (△HAB = △HAC)
=> △ADH = △AEH (ch-gn)
=> AD = AE (2 cạnh tương ứng)
Xét △AID và △AIE có:
AI: chung
IAD = IAE (cmt)
AD = AE (cmt)
=> △AID = △AIE (c.g.c)
=> AID = AIE (2 góc tương ứng)
Mà AID + AIE = 180o => AID = AIE = 90o
=> AH vuông góc DE (2)
Từ (1) và (2) => MN // DE
d) \(\Delta\)ABC cân tại A có AH là đường cao
=> AH là đường trung tuyến
=> H là trung điểm BC
=> BH = HC = BC : 2 = 3 ( cm )
\(\Delta\)ABH vuông tại H => AB2 - BH2 = AH2 => AH = 4 cm
=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB
=> 3.4 = HD . 5 => HD = 2,4 cm
\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD2 = 3,24 => BD = 1,8 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
https://h.vn/hoi-dap/question/168197.html
tham khảo nhé bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E M N I
Cm: a) Ta có: AB + BD = AD
AC + CE = AE
và AB = AC (gt); BD = CE (gt)
=> AD = AE
=> t/giác ADE là t/giác cân tại A
=> góc D = góc E = \(\frac{180^0-\widehat{A}}{2}\)(1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra góc D = góc E = góc B = góc C
mà góc B và góc D ở vị trí trong cùng phía
=> BC // DE (Đpcm)
b) Ta có: góc ABC = góc MBD (đối đỉnh)
góc ACB = góc ECN ( đối đỉnh)
và góc ABC = góc ACB
=> góc MBD = góc ECN
Xét t/giác MBD và t/giác NCE
có góc M = góc N = 900 (gt)
góc MBD = góc ENC (cmt)
BD = CE (gt)
=> t/giác MED = t/giác NCE (ch -gn)
=> BM = CN (hai cạnh tương ứng)
c) Ta có: góc ABC + góc ABM = 1800 (kề bù)
góc DCB + góc ACN = 1800 (kề bù)
Và góc ABC = góc ACB (vì t/giác ABC cân tại A)
=> góc ABM = góc ACN
Xét t/giác MAB và t/giác NAC
có AB = AC (gt)
góc ABM = góc ACN (Cmt)
BM = CN (cmt)
=> t/giác MAB = t/giác NAC ( c.g.c)
=> AM = AN (hai cạnh tương ứng)
=> t/giác AMN là t/giác cân tại A
d) tự lm
https://h.vn/hoi-dap/question/168197.html
tham khảo nhé bạn
bạn có thể ghi lại đề ko?
A C B N M E D
a) Ta có: DMB = ENM (đồng vị) \(\Rightarrow\)DM //EN
b) Ta có: EC = AC - AE
DB = AB - AD
mà: AE = AD, EC = DB
\(\Rightarrow\)EC = DB
Xét tam giác ENC và tam giác DMB có:
EC = DB, C = B \(\Rightarrow\)tam giác ENC = tam giác DMB (cạnh huyền - góc nhọn)
\(\Rightarrow\)BM=CN