Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 2 1 1 2 1 2 A M N B C
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
a: Xét ΔAMC và ΔANB có
AM=AN
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔAMC=ΔANB
b: Ta có: ΔAMC=ΔANB
nên AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔAMC và ΔANB có
AM=AN
\(\widehat{MAC}\) chung
AC=AB
Do đó: ΔAMC=ΔANB
b: Ta có: ΔAMC=ΔANB
nên AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
BC chung
MC=NB
Do đó:ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,D thẳng hàng
a: Xét ΔANB và ΔAMC có
AN=AM
góc A chung
AB=AC
Do đó: ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: góc ABI+góc IBC=góc ABC
góc ACI+góc ICB=góc ACB
mà góc ABI=góc ACI;góc ABC=góc ACB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
=>I nằm trên trung trực của BC
mà AD là trung trực của BC
nên A,I,D thẳng hàng
A B C M
Ta có : AB = AC => tam giác ABC cân tại A
Ta lại có :
B = C ( do ABC cân )
AH chung
BM = MC ( gt )
=> AMB = AMC ( c- g - c )
b) Ta có ABC cân
MÀ M là trung điểm của BC
=> AM là đường cao của ABC
=> AM vuông với BC
A B C D E M .. ..
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
AM : cạnh chung (gt)
BM = CM (gt)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) \(\Delta ABC\): có M là trung điểm BC => AM là đường trụng trực của BC.
Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao.
\(\Rightarrow AM\)vuông góc \(BC\)
c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
AC = AB (gt)>
Góc A : góc chung (gt)
Do AB = AC(gt) : BD = CE (gt)
=> AB - BD = AC - CE
=> AD = AE.
Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)
d) \(\Delta ABC\)cân có:
BD = CE
2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).
a: XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
a) Xét tam giác ABN và tam giác ACM có:
\(\widehat{A}\):góc chung
AM=AN(gt)
AC=AB(tam giác ABC cân)
Suy ra \(\Delta ABN=\Delta ACM\)(c.g.c)
b)Xét tam giác AMN. Do AM=AN(gt) nên tam giác này là tam giác cân
Suy ra \(\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\)(1)
Lại xét tam giác ABC cân nên:
\(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2), suy ra:
\(\widehat{M}=\widehat{B}\) và \(\widehat{N}=\widehat{C}\)
Mà các cặp góc này đều có các góc ở vị trí so le trong nên MN//BC(đpcm)
câu xét tam giác ABN và ACM của bạn sai rùi ạ. cạnh AB đã có AM rồi ạ (M thuộc AB)