K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

a )

xét tam giác ADB và ADC 

A B C D

góc BAD =ADC (gt)

góc ABD= góc ACD(vì ABC cân tại a)

AB=AC (vì ABC cân)

=> chúng bằng nhau (gcg)

=>BĐ=ĐC (2 cạnh tương ứng)

b)

A B C D H K

xét tam giác HBD và KDC

 goc BHD =DKC=90 

goc B=C

BD=DC(cmt)

=> chúng bằng nhau 

=>DH=DK (2 cạnh tương ứng)

c)

A B C D H K

câu này mik đag nghĩ sorry nhé

mik sẽ giải sau

1 tháng 2 2016

Cảm ơn bạn nha!! Bày mk câu c vs

 

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: DB=DC(hai cạnh tương ứng)

b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)

Suy ra: DH=DK(hai cạnh tương ứng)

27 tháng 12 2017

A B C D H K 1 2

a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :

AD ( cạnh chung )

\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )

AB = AC ( gt )

suy ra \(\Delta ADB\)\(\Delta ADC\)( c.g.c )

b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng )                         ( theo câu a )

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AD\perp BC\)

c) vì \(\Delta ADB\)\(\Delta ADC\)( theo câu a )

\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )

Mà \(\widehat{ABD}+\widehat{BDH}=90^o\)\(\widehat{ACD}+\widehat{CDK}=90^o\)

\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)

Xét \(\Delta HBD\)và \(\Delta KCD\)có :

\(\widehat{BDH}=\widehat{CDK}\)( cmt )

BD = CD ( cmt )

\(\widehat{ABD}=\widehat{ACD}\)( cmt )

suy ra \(\Delta HBD\)\(\Delta KCD\)( g.c.g )

\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )

4 tháng 4 2020

a) Có \(\Delta\)ABC cân tại A (gt), AD là phân giác \(\widehat{BAC}\)(D\(\in\)BC)

=> AD là đường phân giác của \(\Delta\)ABC

Mà trong tam giác cân đường phân giác trùng với đường trung tuyến

=> D là trung điểm của BC

=> DB=DC (đpcm)

b)  Xét hai tam giác vuông ΔAKD và ΔAKD 

Ta có: AD cạnh chung

\(\widehat{CAD}=\widehat{BAD}\left(gt\right)\)

\(\widehat{AHD}=\widehat{AKD}=90^o\)
Vậy ΔAKD=ΔAKD(cạnh huyền.góc nhọn)

Vậy DK=DH (cạnh tương ứng)

Nên ΔDHK cân

c. Do ΔAHK có AK=AH nên cân 

Vậy \(\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{KAH}}{2}\)

Do ΔABC cân nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{KAH}}{2}\)
Nên \(\widehat{AKH}=\widehat{ACB}\) mà hai góc trên ở vị trí đồng vị nên HK//BC

4 tháng 5 2022

db

 

 

A B C D H K

Xét tam giác ABD và tam giác HBD có:

BD: chung.

Góc BAD=BHD=90 độ.

Góc ABD=HBD(Phân giác BD)

=> Tam giác ABD=tam giác HBD(ch-gn)

b/ Gọi giao điểm của BD và AH là O.

Xét tam giác AOB và tam giác HOB có:

BO:chung.

Góc ABO=HBO(Phân giác BD)

BA-BH(cạnh tương ứng của tam giác BAD=BHD)

=>Tam giác AOB=tam giác HOB(c-g-c)

=> Góc AOB=HOB(góc tương ứng)=90 độ

Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)

=> AH//KC

Mà BD vuông góc với AH nên BD cũng vuông góc với KC.

c/Xét tam giác ADK và tam giác HDC có:

DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)

Góc DAK=DHC=90 độ.

Góc ADK=HDC(đối đỉnh)

=> tam giác ADK=tam giác HDC(g-c-g)

=> DK=DC(cạnh tương ứng)

Mà trong tam giác vuông HDC có:

DC là cạnh huyền nên DC>DH

=> DK>DH(đpcm)