\(\in\)BC), AB = 5cm, BC = 6cm. CMR:

a,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, vì AM là tpg của A nên BAM=CAM

xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)

=> tam giác AMB=AMC(g.c.g)

b,vì tam giác AMB=AMC nên  góc AMB=AMC

mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC

vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)

=> BM=CM=BC:2=3 cm

theo định lí PTG, ta có:

AM2+BM2=AB2

hay AM2= AB2- BM2

<=>AM2=52-32=16

=> AM= 4 cm.

c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)

xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.

20 tháng 3 2020

A B C M 1 2

a) Xét tam giác AMB và AMC có:

AM chung 

AB=AC (tam giác ABC cân tại A)

\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)

b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC

Vì trong tam giác cân đường trung tuyến trùng với đường cao

=> AM là đường cao tam giác ABC 

=> AM _|_ BC (đpcm)

Bài làm

a) Xét tam giác AMB và tam giác AMC có:

^MAB = ^MAC ( Do AM phân giác )

AB = AC ( Do ∆ABC cân )

^B = ^C ( Do ∆ABC cân )

=> ∆AMB = ∆AMC ( g.c.g )

b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )

=> ^AMB = ^AMC 

Mà ^AMB + ^AMC = 180° ( hai góc kề bù )

=> ^AMB = ^AMC = 180°/2 = 90°

=. AM vuông góc với BC.

Cách 2: Vì tam giác ABC cân tại A

Mà AM là tia phân giác

=> AM đồng thời là đường cao.

=> AM vuông góc với BC .

c) Vì ∆ABC cân tại A

Mà AM vừa là đường phân giác, vừa là đường cao.

=> AM là đường trung tuyến. 

=> BM = MC 

Mà BM + MC = BC = 6

=> BM = MC = 6/2 = 3 ( cm )

Xét tam giác AMB vuông tại M có:

Theo định lí Pytago có:

AB² = AM² + BM²

=> AM² = AB² - BM²

Hay AM² = 5² - 3²

=> AM² = 25 - 9

=> AM² = 16

=> AM = 4 ( cm )

d) Xét tam giác ABC có:

AM vuông góc với BC

AH vuông góc với AC

Mà AM cắt AH tại H

=> H là trực tâm.

=> CH vuông góc với AB . ( Đpcm )

18 tháng 2 2019

a)Xét tam giác AMB và tam giác AMC
ta có: góc AMB=góc AMC (AM là tia phân giác)
AM là cạnh chung góc B=gócC
Vậy tam giác AMB=tam giácAMC(G-C-G)

18 tháng 2 2019

A 1 2 B C M H I K 2 1

Cm: a) Xét t/giác AMB và t/giác AMC

có góc A1 = góc A2 (gt)

    AB = AC (gt)

  góc B = góc C (Vì t/giác ABC cân tại A)

=> t/giác AMB = t/giác AMC (g.c.g)

b) Ta có: t/giác AMB = t/giác AMC (cmt)

=> góc M1 = góc M2 (hai góc tương ứng) ( Đpcm)

Mà góc M1 + góc M2 = 1800 (kề bù)

hay 2.góc M1 = 1800

=> góc M1 = 1800 : 2

=> góc M1 = 900

=> AM \(\perp\)BC( Đpcm)

c) Ta có: t/giác AMB = t/giác AMC (cmt)

=> BM = MC = BC/2 = 6/2 = 3 (cm)

Xét t/giác ABM vuông tại M (áp dụng đính lý Pi - ta - go)

Ta có: AB2 = AM2 + MB2

=> AM2 = AB2 - MB2 = 52 - 32 = 25 - 9 = 16

=> AM = 4

d) Gọi I là giao điểm của BH và AC; K là giao điểm của CH và AB

còn lại tự làm

27 tháng 2 2019

Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) mà \(\widehat{B}=50\)độ \(\Rightarrow\widehat{C}=50\)độ

ADTC tổng 3 góc trong 1 tam giác suy ra góc A = 180 - 2 lần góc B = 180- 2*50=80

b) Xét tam giác AMB và tam giác AMC có 

M1=M2=90độ (vì vuông góc), AC=AB( vì tam giác ABC cân) , góc C = góc B( vì tam giác ABC cân)

suy ra tam giác AMB = tam giác AMC(ch-gn)

c) từ b suy ra MB=MC ( 2 cạnh t/ứng )

Xét tam giac IMB và tam giac IMC có

IM chung 

M1=M2( vì AM vuông góc BC)

MB=MC ( chứng minh trên)

suy ra tam giác IMB = tam giác IMC (c-g-c)

suy ra góc ICM = góc IBM( 2 góc tương ứng )

suy ra tam giác IBC là tam giác cân tại I

d)( tự làm nhé)

27 tháng 2 2019

mình cần bạn nào giúp mình làm cấu d

còn những cấu trên biết làm rồi