\(ME\perp AB\)tại E , 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

a, xét \(\Delta\)BEM và \(\Delta\)CFM có:

           \(\widehat{B}\)=\(\widehat{C}\)(gt)

           BM=CM(trung tuyến AM)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)

b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)

Gọi O là giao của AM và EF

xét tam giác OAE và tam giác OAF có:

              AO cạnh chung

             \(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)

     vì AB=AC mà EB=FC nên AE=AF

\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)

\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)

\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)

từ (1) và (2) suy ra AM là đg trung trực của EF

c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)

ta có tam giác BAM=tam giác CAM(c.g.c)

=> AD là p/g của góc BAC(2)

từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng

                

28 tháng 3 2019

a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C

Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F

BM=CM (BM là trung tuyến)

Góc B=Góc C

=> Tam giác BEM=Tam giác CFM(ch-gn)

b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC

Mà AB=AC=> AE=AF(2)

Từ 1 và 2 => AM là trung trực của EF

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

3 tháng 1 2018

a) Xét \(\Delta ABM\)\(\Delta ACM\), ta có:

AB=AC (gt)

MB=MC ( vì M là trung điểm của BC)

AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)

b) Vì \(\Delta ABM=\Delta ACM\) nên \(\widehat{BAM}=\widehat{CAM}\)

Xét \(\Delta AEM\)\(\Delta AFM\), ta có:

\(\widehat{AEM}=\widehat{AFM}\left(=90^0\right)\)

AM chung

\(\widehat{EAM}=\widehat{FAM}\) (cmt)

\(\Rightarrow\Delta AEM=\Delta AFM\) ( cạnh huyền-góc nhọn)

\(\Rightarrow AE=AF\) ( 2 cạnh tương ứng)

c)Gọi O là giao điểm của AM và EF

Xét \(\Delta AEO\)\(\Delta AFO\), ta có:

AE=AF ( câu b)

\(\widehat{EAO}=\widehat{FAO}\) ( câu b)

AO chung

\(\Rightarrow\Delta AEO=\Delta AFO\) (c-g-g)

\(\Rightarrow\widehat{EOA}=\widehat{FOA}\) ( 2 cạnh tương ứng)

Ta có: \(\widehat{EOA}+\widehat{FOA}=180^0\)

\(\Rightarrow\widehat{EOA}=\widehat{FOA}=\dfrac{180^0}{2}=90^0\)

hay AO\(\perp\)EF

\(AO\perp EF\)\(AM\perp EF\) nên EF//BC

c)

13 tháng 5 2016

a/ Xét tam giác BEM và tam giác CFM có:

Góc B=C(Tam giác ABC cân tại A)

Góc BEM=CFM(Tam giác ABC cân tại A)

BM=MC(Trung tuyến AM)

=> Tam giác BEM=tam giác CFM(ch-gn)

b/Gọi giao điểm của EF và AM là O.

Vì AM là trung tuyến của tam giác cân nên AM cũng là đường cao của tam giác cân ABC.

=> Góc AMB=AMC=90 độ.

Mà Góc EMB=FMC(góc tương ứng của tam giác EMB=tam giác FMC)

=> Góc EMO=FMO.

Xét tam giác EMO và tam giác FMO có:

EM=MF(cạnh tương ứng trong tam giác EMB= tam giác FMC)

Góc EMO=FMO(cmt)

MO chung

=> Tam giác EMO=tam giác FMO(c-g-c)

=> Góc EOM=FOM(góc tương ứng)=180 độ/2=90 độ 

     EO=OF(cạnh tương ứng)

=> AM là đường trung trực của EF.

c/ Vì AI=\(\frac{8}{3}\)cm nên AM có độ dài là: \(\frac{8}{3}:\frac{2}{3}=4\)cm(tính chất trọng tâm tam giác)

Áp dụng định lí Pytago vào tam giác vuông AMC, ta được:

AC2=AM2+MC2=42+MC2=52=25

=> MC=\(\sqrt{\left(5^2-4^2\right)}=3\)cm

Mà BM=MC(Trung tuyến AM)

=> BC=3+3=6cm

13 tháng 5 2016

A B C M E F

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)

1 tháng 3 2021

câu c) C/M: MN//EF

1 tháng 3 2021

 cho tam giác DEF nha