K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABN vầ ΔACM có

AB=AC

góc A chung

AN=AM

=>ΔABN=ΔACM

=>BN=CM

b: Xét ΔNAE và ΔNCB có

góc NAE=góc NCB

NA=NC

góc ANE=góc CNB

=>ΔNAE=ΔNCB

=>AE=CB

Xét ΔMDA và ΔMCB có

góc MAD=góc MBC

MA=MB

góc AMD=góc BMC

=>ΔMDA=ΔMCB

=>AD=BC=AE

=>A là trug điểm của DE

c: Xét tứ giác ADBC có

AD//BC

AD=BC

=>ADBC là hình bình hành

=>DB=AC=BA

Xét tứ giác ABCE có

N là trung điểm chung của AC và BE

=>ABCE là hìh bình hành

=>CE=AB=DB

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC


Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE


Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK


Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

Bài 3.Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M. Qua M kẻ đường thẳng song song với BC cắt AC tại N. Chứng minh :   a)Tam giác AMN cân                     b) BN = MC            c) ⧍BMN = ⧍CNM   d) Gọi I là giao điểm của BN và CM.Chứng minh: ⧍BMI = ⧍CNI   e) Lấy D là trung điểm của BC. Chứng minh ba điểm A; I; D thẳng hàng.Bài 4. Cho tam giác ABC vuông tại A, CM là phân giác...
Đọc tiếp

Bài 3.Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M. Qua M kẻ đường thẳng song song với BC cắt AC tại N. Chứng minh :

   a)Tam giác AMN cân                     b) BN = MC            c) ⧍BMN = ⧍CNM

   d) Gọi I là giao điểm của BN và CM.Chứng minh: ⧍BMI = ⧍CNI

   e) Lấy D là trung điểm của BC. Chứng minh ba điểm A; I; D thẳng hàng.

Bài 4. Cho tam giác ABC vuông tại A, CM là phân giác của góc ACB ( M € AC).Kẻ MN vuông góc với BC ( N € BC).

  a)Chứng minh : ⧍ACM = ⧍NCM

  b)Đường thẳng MN và AC cắt nhau tại P.Chứng minh : ⧍MBP cân.

  c)Gọi I là giao điểm của CM và BP. Trên tia đối của tia IC lấy điểm Q sao cho

 IC = IQ.Chứng minh : QB vuông góc với AB.

  d)So sánh chu vi của tam giác MBQ với chu vi tam giác MAC.

 

2
7 tháng 4 2020

a) Có tam giác ABC cân tại A => AB=AC

M thuộc AB, N thuộc AC và MN//BC

=> AM=AN

=> Tam giác AMN cân tại A

b) Xét tứ giác BMNC có MN//BC

=> BMNC là hình thang

Xét hình thang BMNC có
AM=AN và AB=AC => MN=NC

=> Hình thang BMNC cân 

=> BN=CM (tính chất hình thang cân)

c) Xét tam giác BMN và tam giác CNM có:

BN chung

\(\widehat{MNB}=\widehat{NBC}\) (MN//BC)

BM=MC (cmt)

=> Tam giác BMN=Tam giác CNM (cgc)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD