K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

a) Xét tam giác AHK có AH=AK nên tam giác này là tam giác cân. Suy ra:

\(\widehat{H}=\widehat{K}=\frac{180^o-\widehat{A}}{2}\)(1)

Xét tam giác ABC cân tại A(gt). Suy ra:

\(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2), suy ra \(\widehat{B}=\widehat{C}=\widehat{H}=\widehat{K}\)Mà các góc này ở vị trí so le trong nên HK//BC

b) Xét tam giác IBH và tam giác ICH có:

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

IB=IC(I là trung điểm của BC)

HB=KC(do tam giác ABC cân, AH=AK(gt))

Suy ra \(\Delta IBH=\Delta ICH\left(c.g.c\right)\)

c)Xét tam giác ABC cân. Vì Ai là đường trung tuyến nên cũng là đường phân giác của \(\widehat{A}\). Xét tam giác AIH và tam giác AIK có:

AI: chung

\(\widehat{HAI}=\widehat{KAI}\)(AI là đường phân giác)

HA=AK(gt)

Suy ra \(\Delta HAI=\Delta KAI\left(c.g.c\right)\)

3 tháng 3 2020

B A C I H K Hình ảnh chỉ mang tính chất minh họa  

a) +) Xét \(\Delta\) AHK có AH = AK ( gt)

=> \(\Delta\) AHK cân tại A

=> \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)  (1)  ( tính chất tam giác cân )

+) Xét \(\Delta\)ABC cân tại A

=>   (2) ( tính chất tam giác cân)

và AB = AC

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

=> HK // BC

b) Ta có \(\hept{\begin{cases}AB=AC\\AH=AK\end{cases}}\) ( gt + cmt)

\(\Rightarrow AB-AH=AC-AK\)

\(\Rightarrow HB=KC\)

+) Xét \(\Delta\)IBH và \(\Delta\)ICK có

IB = IC ( do I là trung điểm của AC )

\(\widehat{ABC}=\widehat{ACB}\) ( cmt)

BH = CK ( cmt)

=> \(\Delta\)IBH = \(\Delta\)ICK (c-g-c)

c) +) Xét \(\Delta\)AIB và \(\Delta\)AIC có

AI : cạnh chung

AB = AC ( cmt)
IB = IC ( do I là trung điểm của AC ) 

=> \(\Delta\)AIB = \(\Delta\)AIC (c-c-c )

=> \(\widehat{IAB}=\widehat{IAC}\) ( 2 góc tương ứng )

+) Xét \(\Delta\)AIH và \(\Delta\)AIK có

AI : cạnh chung

\(\widehat{IAB}=\widehat{IAC}\) ( cmt)
AH = AK ( gt)

=> \(\Delta\)AIH = \(\Delta\)AIK (c-g-c)

~~~ Học tốt

Takiagawa Miu_

8 tháng 5 2016

??????

20 tháng 8 2016

bài này mình học

rùi nhưng ko nhớ

27 tháng 4 2016

lam on tra loi di ạ

a) sử dụng tc: Từ vuông góc đến //

b)tam giác KHA= tam giác IHA(c.g.c)

=> AK=AI

=> góc AKI=góc AIK

vì AK=AI=> tam giác AKI cân

c) vì AB//HK=> góc BAK=góc AKI(so le trong) 

  góc BAK=góc AKI

 mà góc AKI=góc AIK(cmt)                

 d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI 

tam giác AKC = tam giác AIC

20 tháng 2 2021

.ádfgthdfghj

a) Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{KAC}\) chung

Do đó: ΔAHB=ΔAKC(cạnh huyền-góc nhọn)

⇒AH=AK(hai cạnh tương ứng)

b) Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

\(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(dấu hiệu nhận biết hai đường thẳng song song)

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn