Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
A B C D E M 1 2 2 1 1 2
b) Xét hai tam giác ABE và ACD có:
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\): góc chung
AD = AE (gt)
Vậy: \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
Suy ra: BE = CD (hai cạnh tương ứng)
c) Ta có: \(\widehat{D_1}+\widehat{D_2}=180^o\)
\(\widehat{E_1}+\widehat{E_2}=180^o\)
Mà \(\widehat{D_1}=\widehat{E_1}\) (\(\Delta ABE=\Delta ACD\))
\(\Rightarrow\) \(\widehat{D_2}=\widehat{E_2}\)
Ta lại có: BD = AB - AD
CE = AC - AE
Mà AB = AC (do \(\Delta ABC\) cân tại A)
AD = AE (gt)
\(\Rightarrow\) BD = CE
Xét hai tam giác BDM và CEM có:
\(\widehat{ABE}=\widehat{ACD}\) (\(\Delta ABE=\Delta ACD\))
BD = CE (cmt)
\(\widehat{D_2}=\widehat{E_2}\) (cmt)
Vậy: \(\Delta BDM=\Delta CEM\left(g-c-g\right)\)
d) Xét hai tam giác ABM và ACM có:
AB = AC (do \(\Delta ABC\) cân tại A)
MB = MC (\(\Delta BDM=\Delta CEM\))
AM: cạnh chung
Vậy: \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)
Suy ra: \(\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)
Do đó: AM là tia phân giác của \(\widehat{BAC}\) (đpcm).
Cho mk hỏi M là giao điểm của BE và CD hay của BD và CD vậy?
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
Diểm O ở đâu ra vậy em nhỉ, em xem kỹ lại đề bài em nhé!