K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

∆ABD và ∆ACE có:

AB=AC(gt)

ˆA góc chung.

AD=AE(gt)

Nên ∆ABD=∆ACE(c.g.c)

Suy ra: ˆABD=ˆACE.

Tức là ˆB1 =ˆC1

b) Ta có ˆB=ˆCˆB1=ˆC1 suy ra ˆB2=ˆC2

Vậy ∆IBC cân tại I



26 tháng 11 2017

Giải bài 51 trang 128 Toán 7 Tập 1 | Giải bài tập Toán 7

a) Xét ΔABD và ΔACE có:

AB = AC (gt)

Góc A chung

AD = AE (gt)

Nên ΔABD = ΔACE ( c.g.c)

Giải bài 51 trang 128 Toán 7 Tập 1 | Giải bài tập Toán 7

Vậy ΔIBC cân tại I

14 tháng 1 2020

A E B M D C 1 1 2 2 1 2

a, Ta có  \(\Delta ABC\)cân tại A 

=>AB=AC      

+)Xét \(\Delta ABD\)và \(\Delta ACE\) có

 AB=AC (cmt)

\(\widehat{BAC}\): chung

AD=AE  (gt)

=> \(\Delta ABD\)\(\Delta ACE\) (c-g-c)

=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc t/ứ)

b, Ta có \(\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\\\widehat{ABD}=\widehat{ACE}\left(cmt\right)\end{cases}}\)(t/c t/g cân)

=> \(\widehat{B_2}=\widehat{C_2}\)

Xét \(\Delta IBC\)có \(\widehat{B_2}=\widehat{C_2}\)=> \(\Delta IBC\)cân tại I

Xin lỗi nhé mình chưa nghĩ ra câu b và câu c

17 tháng 11 2016

A B C E D 1 2 1 2

Giải:
Do \(\Delta ABC\) cân tại A

\(\Rightarrow AB=AC\circledast\)

Xét \(\Delta ABD,\Delta ACE\) có:

\(AB=AC\) ( theo \(\circledast\) )

\(\widehat{A}\): góc chung

\(AE=AD\left(gt\right)\)

\(\Rightarrow\Delta ABD=\widehat{ACE}\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )

b) Vì \(\Delta ABC\) cân tại A nên \(\widehat{B}=\widehat{C}\)

\(\widehat{B_2}=\widehat{C_2}\) ( do \(\Delta ABD=\Delta ACE\) )

\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

\(\Rightarrow\Delta IBC\) cân tại I

Vậy...
 

17 tháng 11 2016

Ta có hình vẽ:

a/ Xét tam giác ABD và tam giác ACE có:

-AD = AE (GT)

-góc A: góc chung

-AB = AC (vì ABC là \(\Delta\)cân)

Vậy tam giác ABD = tam giác ACE (c.g.c)

b/ Vì tam giác ABD = tam giác ACE (câu a)

nên góc ABD = góc ACE (2 góc tương ứng) (1)

Mà góc B = góc C (vì \(\Delta\)ABC là \(\Delta\)cân) (2)

Từ (1), (2) => IBC = ICB

=> tam giác IBC là tam giác cân

6 tháng 1 2016

A B C D E I

a,Xét \(\Delta ABD\) và \(\Delta ACE\) có 

AB=AC(gt)

góc A chung

AD=AE(gt)

=>\(\Delta ABD\)=\(\Delta ACE\)(cgc)

=> góc ABD = góc ACE ( 2 góc tương ứng )

b, Ta có \(\Delta ABC\) cân tại A 

=> góc ABC = góc ACB ( 2 góc ở đáy )

Ta lại có góc ABD+góc DBC = góc ABC

             góc ACE+góc ECB = góc ACB

=> góc DBC = góc ECB ( vì góc ABD = góc ACE theo câu a)

hay góc IBC = góc ICB ( vì BD cắt CE tại I )

Xét \(\Delta IBC\)có 

góc IBC = góc ICB ( cmt )

=> \(\Delta IBC\)cân tại I

15 tháng 3 2016

Giải:

∆ABD và ∆ACE có:

AB=AC(gt)

A góc chung.

AD=AE(gt)

Nên ∆ABD=∆ACE(c.g.c)

Suy ra: ABD=ACE.

Tức là B1 =B2.

b) Ta có B=C mà B1 =C1 suy ra B2 =C2.

Vậy ∆IBC cân tại I.

28 tháng 12 2017

XétΔABD và ΔACE có

AB=AC(gt)

góc A chung

AD=AE(gt)

=> ΔABD= ΔACE(cgc)

=> góc ABD = góc ACE ( 2 góc tương ứng )

b, Ta có ΔABC cân tại A

=> góc ABC = góc ACB ( 2 góc ở đáy )

Ta lại có góc ABD+góc DBC = góc ABC góc ACE+góc ECB = góc ACB

=> góc DBC = góc ECB ( vì góc ABD = góc ACE theo câu a) hay góc IBC = góc ICB ( vì BD cắt CE tại I )

Xét ΔIBCcó

góc IBC = góc ICB ( cmt )

=>ΔIBC cân tại I

18 tháng 12 2016

A B C I 1 2 1 2

a) Xét 2 tam giác ABD và tam giác ACE có :

AB = AC ( gt)

AD = AE (gt)

A là góc chung

suy ra tam giác ABD = tam giác ACE ( c-g-c)

suy ra góc ABD = góc ACE (2 góc tương ứng )

Vậy góc ABD = góc ACE

b)Ta có: góc B= góc B1 + góc B2

góc C = góc C1 + góc C2

mà góc B1 = góc C1 (vì tam giác ABD = tam giác ACE)

suy ra góc B2 = góc C2

suy ra tam giác IBC là tam giác cân tại I

27 tháng 2 2021

Tham khảo

* Tự vẽ hình nha !

a. Xét ΔABDΔABD và ΔACEΔACE ta có:

AB=AC (ΔABCΔABC cân tại A)

Góc A là góc chung.

AD=AE (gt)

=> ΔABD=ΔACEΔABD=ΔACE (c-g-c)

=> Góc ABD=góc ACE (2 góc tương ứng)

b. Ta có: góc ABD + góc IBC = góc ABC

góc ACE + góc ICB = góc ACB

Mà góc ABC = góc ACB (ΔABCΔABC cân tại A)

góc ABD = góc ACE (cmt)

=> Góc IBC = góc ICB

=> ΔIBCΔIBC cân tại I.

a) Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

AD=AE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)

b) Ta có: AE+EB=AB(E nằm giữa A và B)

AD+DC=AC(D nằm giữa A và C)

mà AE=AD(gt)

và AB=AC(ΔABC cân tại A)

nên EB=DC

Xét ΔEBC và ΔDCB có 

EB=DC(cmt)

\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔBAC cân tại A)

BC chung

Do đó: ΔEBC=ΔDCB(c-g-c)

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định nghĩa tam giác cân)