Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔDMIΔDMI và ΔENIΔENI ta có:
Dˆ=Eˆ=90oD^=E^=90o
MD=NE
MIDˆ=NIEˆMID^=NIE^(đối đỉnh)
Do đó ΔDMIΔDMI=ΔENIΔENI(cgv-gn)
Vậy MI=NI(hai cạnh tương ứng)
⇒⇒đpcm
b) Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại J.
Ta có: ΔABJ=ΔACJΔABJ=ΔACJ(g-c-g) nên: JB=JC(hai cạnh tương ứng)
Nên J thuộc AL đường trung trực ứng với BC
Mặt khác: từ ΔDMB=ΔENCΔDMB=ΔENC(câu a)
Ta có: BM=CN
BJ=CJ(cmt)
MBJˆ=NCJˆ=90oMBJ^=NCJ^=90o
Nên ΔBMJ=ΔCNJΔBMJ=ΔCNJ(c-g-c)
⇒⇒MJ=NJ hay đường trung trực của MN luôn đi qua điểm J cố định
Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo lời giải tại link trên nhé.
B C A D E M N I H K
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
a)Ta có:\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
Mà \(\widehat{ACB}=\widehat{NCE}\)(2 góc đối đỉnh)
=>\(\widehat{ABC}=\widehat{NCE}\)
Xét tam giác MDB và tam giác NEC có:
\(\widehat{MDB}=\widehat{NEC}\)(= 90 độ)
BD=EC
\(\widehat{DBM}=\widehat{ECN}\)(cmt)
=>tam giác MDB = tam giác NEC(g-c-g)
=>DM=EN
b)Ta có:\(\widehat{DMI}+\widehat{DIM}=90độ\)(tam giác DIM vuông tại D)
\(\widehat{ENI}+\widehat{NIE}=90độ\)(tam giác INE cân tại E)
Mà \(\widehat{DIM}=\widehat{NIE}\)(2 góc đối đỉnh)=>\(\widehat{DMI}=\widehat{ENI}\)
Xét tam giác DMI và tam giác ENI có:
\(\widehat{IDM}=\widehat{CEN}\)(=90 độ)
DM=EN (theo phần a)
\(\widehat{DMI}=\widehat{ENI}\)(cmt)
=>tam giác DMI= tam giác ENI(g-c-g)
=>MI=IN
Vậy đường thẳng BC cát MN tại trung điểm I của MN