K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

A B C I K H

a) Xét \(\Delta ABI;\Delta ACK\) có :

\(\widehat{AIB}=\widehat{AKC}\left(=90^o\right)\)

\(AB=AC\left(\Delta ABCcântạiA\right)\)

\(\widehat{A}:chung\)

=> \(\Delta ABI=\Delta ACK\) (cạnh huyền - góc nhọn)

=> AK = AI (2 cạnh tương ứng)

b) Xét \(\Delta AKI\) có :

AK =AI (câu a)

=> \(\Delta AKI\) cân tại A

Ta có : \(\widehat{AKI}=\widehat{AIK}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AKI}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> KI // AB (ĐPCM)

c) Xét \(\Delta KBC;\Delta IBC\) có :

\(\widehat{BKC}=\widehat{CIB}\left(=90^{^o}\right)\)

\(BC:chung\)

\(\widehat{KBC}=\widehat{ICB}\left(\Delta ABCcân\right)\)

=> \(\Delta KBC=\Delta IBC\) (cạnh huyền - góc nhọn)

=> \(\widehat{KCB}=\widehat{IBC}\) (2 góc tương ứng)

Xét \(\Delta HBC\) có :

\(\widehat{HCB}=\widehat{HBC}\) (do \(\widehat{KCB}=\widehat{IBC}\))

=> \(\Delta HBC\) cân tại H

Do đó: HB = HC (đpcm)

d) Xét \(\Delta ABH;\Delta ACH\) có:

\(AB=AC\left(\Delta ABCcân\right)\)

\(AH:Chung\)

\(BH=CH\left(cmt\right)\)

=> \(\Delta ABH=\Delta ACH\left(c.c.c\right)\)

=> \(\widehat{BAH}=\widehat{CAH}\)(2 góc tương ứng)

=> AH là tia pahan giác của \(\widehat{BAC}\)

Xét \(\Delta AKI\) cân tại A có :

AH là tia phân giác của \(\widehat{A}\) (cmt)

=> AH đồng thời là đường trung trực trong tam giác ABC

Suy ra : \(AH\perp BC\left(đpcm\right)\)

28 tháng 1 2022

Bạn tự vẽ hình.

a, Sử dụng định lí pitago tính được \(BC=5cm\)

b, Dễ dàng chứng minh \(\Delta ABK=\Delta IBK\left(c.g.c\right)\)

=> \(\widehat{BIK}=\widehat{BAK}=90^o\)

=> \(KI\perp BC\)

c, Ta có: \(\hept{\begin{cases}AH\perp BC\\KI\perp BC\end{cases}}\) 

=> AH // KI 

=> \(\widehat{HAI}=\widehat{KIA}\) (1)

Mà AK = KI (do \(\Delta ABK=\Delta IBK\))

=> \(\Delta AKI\) cân tại K

=> \(\widehat{KAI}=\widehat{KIA}\) (2)

Từ (1) và (2) => \(\widehat{HAI}=\widehat{KAI}\)

=> AI là tia phân giác \(\widehat{HAC}\)

d, \(\Delta AEK\) có AI là phân giác => \(\Delta AEK\) cân tại A 

28 tháng 1 2022

ko cần tim đâu, k là đc

28 tháng 1 2022

ukkkkk

Bài 1:  Cho tam giác nhọn ABC. Kẻ AH  BC ( H BC ). Cho biết AB = 13cm; AH = 12cm; HC = 16cm. Tính các độ dài các cạnh AC; BC. Bài 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE.  a/  Chứng minh rằng tam giác ADE là tam giác cân.  b/  Kẻ BH  AD ( H  AD ), kẻ CK  AE ( K  AE). Chứng minh rằng BH = CK.  c/  Gọi O là giao điểm của BH...
Đọc tiếp

Bài 1:  
Cho tam giác nhọn ABC. Kẻ AH  BC ( H BC ). Cho biết AB = 13cm; AH = 12cm; HC = 16cm. Tính các độ dài các cạnh AC; BC. 
Bài 2: 
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. 
 a/  Chứng minh rằng tam giác ADE là tam giác cân. 
 b/  Kẻ BH  AD ( H  AD ), kẻ CK  AE ( K  AE). Chứng minh rằng BH = CK. 
 c/  Gọi O là giao điểm của BH và CK. Tam giác OBC là tam giác gì? Vì sao? 
Bài 3:  
Cho tam giác ABC vuông tại B có AB = 12cm, AC = 20cm. Tính dộ dài cạnh BC . 
Bài 4:  
Cho  ABC cân tại A . Vẽ BH  AC ( H  AC), CK  AB, ( K  AB ). 
 a/  Vẽ hình     
 b/  Chứng minh rằng AH = AK  
 c/  Gọi I là giao điểm BH và CK. Chứng minh   
 d/  Đường thẳng AI cắt BC tại H. Chứng minh AI  BC tại H. 
Bài 5:  
Cho  ABC có Â = 90o , BC = 15, AC = 12. Tính AB   
Bài 6:  
Cho  ABC  cân tại A. Kẻ AH  BC ( H  BC ) . 
 a/  Chứng minh BH = HC      
 b/  Kẻ HE  AC ( E  AC), HF  AB ( F  AB ). Hỏi  HEF là tam giác gì? Vì sao? 
Bài 7: 
Cho tam giác ABC cân có AB = AC = 5cm, BC= 8cm . Kẻ AH vuông góc với BC tại H. 
a/ Chứng minh: HB = HC và . 
b/ Tính độ dài AH. 
c/ Kẻ HD  AB ( D  AB ), Kẻ HE  AC (E  AC ). Chứng minh: HDE là tam giác cân 
Bài 8: 
Cho ABC có: AB = 4,5cm, BC = 6cm và AC = 7,5cm. Chứng tỏ ABC là tam giác vuông 
Bài 9:  
Cho ABC cân tại A. Kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại I. Chứng minh: 
a) 
b) 
c) AI là đường trung trực của BC. 
GVBM: Nguyễn Quốc Nhựt 


Tuyển tập các bài tập ôn tập theo từng chuyên đề- Toán 7 

Bài 10: 
Cho tam giác ABC cân tại A. Gọi D là trung điểm của cạnh BC. Qua A vẽ đường thẳng d // BC. Chứng minh rằng: 
a)      ABD = ACD. 
b)     AD là tia phân giác của góc BAC. 
c)      ADd. 
Bài 11: 
 Cho ABC có góc A bằng 600. Tia phân giác của góc ABC cắt tia phân giác của góc ACB ở I. 
a)      Cho biết . Tính số đo. 
b)     Tính số đo . 
Bài 12: 
 Cho ABC, D là trung điểm cạnh BC. Trên tia đối của tia DA lấy điểm E sao cho DE = DA. Chứng minh rằng: 
a)      ADB = EDC. 
b)     AB//CE. 
c)      . 
Bài 13: 
Cho ABC vuông tại A. Tia phân giác của cắt AC ở D; E là một điểm trên cạnh BC sao cho BE = BA. 
a)      Chứng minh rằng: ABD = EBD. 
b)     Chứng minh rằng: DEBC. 
c)      Gọi F là giao điểm của DE và AB. Chứng minh rằng DC = DF. 
Bài 14: 
Cho tam giác nhọn ABC (AB 0. D là trung điểm của cạnh AC. Trên tia AB lấy điểm E sao cho AE = AD. Chứng minh rằng: 
a)      ADE là tam giác đều. 
b)     DEC là tam giác cân. 
c)      CEAB. 
Bài 15: 
Cho ABC vuông cân tại A. M là trung điểm cạnh BC. Điểm E nằm giữa M và C. Vẽ BHAE tại H, CKAE tại K. Chứng minh rằng: 
a)      BH = AK. 
b)     HBM = KAM. 
c)      MHK vuông cân. 

_ Giải giúp mk ak, đúng mk sẽ tick, thank_

 

3
12 tháng 2 2020

15 câu hỏi hết thì sao tiến bộ được , tự làm đi nhé ,ko ai rảnh để làm cho b đâu

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC &gt; 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB &lt; AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH &gt; EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD &lt; AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD &lt; DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC &gt; 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)