Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tgiac vuông BDC và tgiac vuông CEB có:
BC là cạnh chung
góc B=góc C(gt)
=> tgiac vuông BDC=tgiac vuông ICD( cạnh huyền-góc nhọn)(góc-cạnh-góc í)
b) ta có tgiac BDC= tgiac IBC + tgiac ICD
và tgiac CEB= tgiac IBC +tgiac IBE
mà tgiac BDC=tgiacCEB(cmt)
=> tgiac ICD=tgiac IBE
=> góc IBE= góc ICD( hai góc tương ứng)
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
A B C D E H I
XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)
^E=^D=\(90^0\)
BC chung =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)
^BCB=^EBC
=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD
ta lại có EB=DC mà AB=AC nên AD=AE
Xét \(\Delta AEI\)VÀ \(\Delta ADI\)
AE=AD
^E=^D=\(90^0\) =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)
AI chung =>^EAI=^DAI
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)
AB=AC
AH chung =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)
^EAI=^DAI =>^AHB=^AHC
MÀ ^AHB + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)
VẬY \(AH\perp BC=\left\{H\right\}\)