Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa câu b: Từ M kẻ ME
Bg
a/ Xét hai tam giác AMB và AMC có:
AB = AC (gt)
BM = MC (vì M là trung điểm của BC)
AM là cạnh chung
Nên \(\Delta AMB=\Delta AMC\)(c.c.c)
Vậy \(\Delta AMB=\Delta AMC\)
b/ Xét hai tam giác vuông AME và AMF có:
\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))
AM là cạnh chung
Nên \(\Delta AME=\Delta AMF\)(g.c.g)
Do đó AE = AF (hai cạnh tương ứng)
Vậy AE = AF
c và d hơi dài. Đợi một thời gian :((

1: S=8⋅62=24(cm2)S=8⋅62=24(cm2)
2: Xét ΔABC vuông tại A có AH là đường cao
nên AC2=HC⋅BCAC2=HC⋅BC
3: Xét ΔAHB vuông tại H có HM là đường cao
nên AM⋅AB=AH2(1)AM⋅AB=AH2(1)
Xét ΔAHC vuông tại H có HN là đường cao
nên AN⋅AC=AH2(2)AN⋅AC=AH2(2)
Từ (1) và (2) suy ra AM⋅AB=AN⋅ACAM⋅AB=AN⋅AC
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
Mọi người ơi giúp mình với,mình sắp phải nộp bài rồi.Mong mọi người giúp đỡ ạ.
a) Xét tam giác ABH và tam giác ACH
Có: AB=AC(gt)
Góc ABH = Góc ACH (gt)
AH chung
=> Tam giác ABH = tam giác ACH (c.g.c)
Mặt khác: Tam giác ABC cân tại A
và AH là đường cao
=> AH vừa là đường cao vừa là tia phân giác
b) Ta có: Tam giác BDH cân tại H ( do AH=BH )
mà DH vuông AB
=> DH=AH (1)
Tương tự: HE=AH (2)
Từ (1),(2) => HD=HE
=> Tam giác DHE cân tại H
c) C/m: Góc ADE = Góc AED = Góc EDH (1)
C/m: Góc EDH = Góc BHD = Góc BCA (2)
Từ (1),(2) => BC//DE ( câu cuối trình bày hơi dài nên mình gợi ý rồi đó )