Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình:
a. xét tam giác vuông AHB và tam giác AHC,ta có:
AB = AC ( gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> HB = HC ( 2 cạnh tương ứng)
=> \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng)
mà HB = HC => BC/2 = 8/2= 4 ( cm)
b. xét tam giác vuông BH,theo định lý Pi-ta-go:
AB2 = AH2 + BH2
=> 52 = x2 + 42
=> x2 = 52 - 42
=> x2 = 9
=> \(\sqrt{x}=9\)
=> x = 3
Vậy AH = 3 cm
câu c nghĩ đã :)
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
a, xét tam giác AHD và tam giác AHB có : AH hcung
góc AHD = góc AHB = 90
HD = HB (Gt)
=> tam giác HAB = tam giác HAD (2cgv)
=> AD = AB (Đn)
=> tam giác ABD cân tại (Đn)
có góc BAC = 60 (gt)
=> tam giác ABD đều
b, tam giác ABC vuông tại A (gt)
=> góc ABC + góc ACB = 90 (Đl)
góc ABC = 60 (gt)
=> góc ACB = 30 mà tam giác ABC vuông tại A (gt)
=> AB = BC/2 (đl)
có AB = AD = BD do tam giác ABD đều (câu a)
=> AD = BD = BC/2
BD + CB = BC
=> AD = DC = BC/2
a, vì tam giác ABC cân => góc B = góc C
xét tam giác ABH và ACH ta có
AB =AC
góc B = góc C
ah là cạnh chung
=> tam giác ABH = ACH
=> HB = HC ( hai cạnh tương ứng)
b, HB =HC
mà HB + HC = 8cm => HB = HC = 8: 2 = 4 cm
xét tam giác ABH vuông tại h có
AH mũ 2 + BH mũ 2 = ab mũ 2
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ hai + 16 = 25
AH mũ 2 = 25 -16
=> AH mũ 2 = 9
=> AH = cân bậc hai của 9 = 3
k mình nha và kết bạn với mình nữa nhá