K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

A B C H D E F 1 2

a. Vì \(\Delta ABC\)cân tại A  \(\Rightarrow\)AB = AC, góc B = góc C.

Xét \(\Delta ABH\)và \(\Delta ACH\)có :

AB = AC

AH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền - cạnh góc vuông).

b.Vì \(\Delta ABH=\Delta ACH\)\(\Rightarrow\)góc AHB = góc AHC ( góc tương ứng )

Mà góc AHB +AHC = 180 độ ( kề bù ) => góc AHB = AHC = 90 độ => AH\(\perp\)BC.

c.Xét tam giac HDB và HEC có :

HB = HC ( vì tg ABH = ACH )

góc B = góc C

=> tam giác HDB = HDC ( cạnh huyền - góc nhọn )

=>BD = CE ( cạnh tương ứng )

Vì AB = AC => AD = AE.

Vì tg AHB = AHC => góc A1 = A2 ( góc tương ứng )

Xét tg AFD và AFE có :

AD = AE

Góc A1 = A2

AF là canh chung

=> Tg AFD = AFE ( c-g-c)

=> góc ADF = AEF ( góc tương ứng )

Ta có : góc A + ADF + AEF = góc A + ABC + ACB = 180 độ

=> 2.ADF = 2.ABC => Góc ADF = ABC mà 2 góc này nằm ở vị trí đồng vị => DE \(//\)BC.

24 tháng 3 2020

A B C H D E

a) Xét \(\Delta BAH\)và \(\Delta CAH\)có: 

AH chung

\(\widehat{BAH}=\widehat{CAH}\)(AH là phân giác \(\widehat{BAC}\))

AB=AC (\(\Delta\)ABC cân tại A)

=> \(\Delta BAH=\Delta CAH\left(cgc\right)\)

b) Có AH là phân giác \(\widehat{BAC}\left(gt\right)\)\(\Delta\)ABC cân tại A (gt)

=> AM là đường phân giác trong của tam giác ABC cân tại A

=> AM trung với đường cao và đường trung tuyến

=> AM _|_ BC(đpcm)

d)

15 tháng 2 2020

a, xét tam giác ABH và tam giác ACH có AH chung

góc AHC = góc AHB = 90 

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABH = tam giác ACH (ch-cgv)

b, ta giác ABH = tam giác ACH (câu a)

=> HB = HC (đn)

xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90

góc ABC = góc ACB do tam giác ABC cân tại A  (gt)

=> tam giác BHF = tam giác CHE (ch-gn)

=> BF = CE (đn)

AB = AC (câu a)

BF + FA = AB

CE + AE = AC

=> FA = AE

=> tam giác AFE cân tại  A (đn)

c, tam giác AFE cân tại A (Câu b)

=> góc AFE = (180 - góc BAC) : 2 (tc)

tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)

=> góc AFE = góc ABC mà 2 góc này đồng vị

=> FE // BC (định lí)

10 tháng 1 2021

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trug điểm của BC

hay HB=HC

b: BC=6cm

nên BH=3cm

=>\(AH=\sqrt{10^2-3^2}=\sqrt{91}\left(cm\right)\)

c: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔAEH=ΔAFH

Suy ra: AE=AF

hay ΔAEF cân tại A

2 tháng 3 2022

bạn có thể làm câu d giúp mình đc k ah. mình cảm ơn rất nhìu ạ

 

25 tháng 2 2020

                                                                       giúp mik với mik cảm ơn rất nhiều

25 tháng 2 2020

A B C E F 1 2 H

A)TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN

=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

XÉT\(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta ABH\)\(\Delta ACH\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

\(AB=AC\left(GT\right)\)

\(\widehat{B}=\widehat{C}\left(GT\right)\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(G-C-G\right)\)

B)

TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN

=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

C)VÌ\(\Delta ABH=\Delta ACH\left(CMT\right)\)

=>HB=HC (HAI CẠNH TƯƠNG ỨNG)

D)XÉT\(\Delta AEH\)\(\Delta AFH\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

D) XÉT TAM GIÁC LÀ ĐƯỢC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là trung tuyến

nên AH là phân giác

c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có

AH chung

góc EAH=góc FAH

=>ΔAEH=ΔAFH

=>AE=AF
=>ΔAEF cân tại A

mà AI là phân giác

nên AI là trung tuyến

31 tháng 1 2019

a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma ) 
Mà HB + HC = BC 
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2 
=> AH2 = 52 - 42 = 9 
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H 

1 tháng 2 2019

Góc BAH =góc HAC là 2 góc tương ứng 

HẢ BN

15 tháng 9 2018

hình tự vẽ nhá!
a, Vì ^B = ^C

=> t/g ABC cân tại A

=> AB = AC

Vì tam giác ABC cân tại A nên đường cao AH cũng là đường trung tuyến

       => HB = HC

XÉt t//g ABH và t/g ACH có :
  AB = AC ( cmt )

 ^B = ^C ( gt )

 HB = HC ( cmt )

=> t/ ABH = t/g ACH ( g.c.g)

b, Vì HA = HB (Cmt)

        AH vuông góc BC

=> AH là trung trực BC

c, Vì tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\)                  (1)

Xét t/g HMB và t/g HNC có:
   HB = HC (cmt)

  ^B = ^C

  ^BHM =  ^CHN ( = 90 độ )

=>  t/g HMB = t/g HNC ( ch-gn )

=>HM = HN

Xét t/g AMH và t/g ANH có :

  ^AMH = ^ANH (=90 độ)

 AH chung

 HM = HN ( cmt)

=> t/g AMH = t/g ANH (ch-cgv)

=>AM = AN 

=> t/g AMN cân tại A
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^o-\widehat{MAN}}{2}\)                (2)

Từ (1) và (2) => ^AMN = ^ABC

   MÀ 2 góc này ở vị trí đồng vị

 => MN // BC (ĐPCM)

14 tháng 3 2021

undefined

undefined

undefined