K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

A B C I 1 2

Cm: a) Xét t/giác AIB và t/giác AIC

có AB = AC (gt)

  BI = CI (gt)

  AI : chung

=> t/giác AIB = t/giác AIC (c.c.c)  (Đpcm)

b) Do I là trung điểm của BC => IB = IC

Ta có : t/giác AIB = t/giác AIC (cmt)

=> góc A1 = góc A2 (hai góc tương ứng)

=> AI là tia p/giác của góc A

=> góc A1 =  góc A/2

hay góc BAI = 1/2 góc BAC (Đpcm)

8 tháng 2 2019

A B C K H I

a,áp dụng định lý py-ta-go vào tam giác vuông ABC ta có 

\(AB^2+AC^2=BC^2\)

\(3^2+4^2=BC^2\)

\(9+16=BC^2\)

\(25=BC^2\)

\(\Rightarrow BC=5cm\)

b, Ta có :

\(\hept{\begin{cases}HK\perp AC\left(gt\right)\\AB\perp AC\left(\Delta ABC\perp A\right)\end{cases}}\)

\(\Rightarrow HK//AB\left(\perp AC\right)\)

c, Xét tam giác vuông AKH và tam giác vuông  AIH có:

AH : cạnh chung

HI=HK(GT)

=>  tam giác vuông AKH = tam giác vuông  AIH ( 2 cạnh góc vuông )

=>  AK = AI ( 2 cạnh tương ứng )

=> tam giác AKI cân tại A(AK = AI  : 2 CẠNH BÊN)  

d, ta có tam giác AKI cân tại A( cmt )

\(\Rightarrow\widehat{AIK}=\widehat{AKI}\)( 2  góc ở đáy)              (1)

lại có HK // AB ( cmt)

=>\(\widehat{BAK}=\widehat{AKI}\)(   2 góc slt)                (2)

từ (1) và (2) =>\(\widehat{AIK}=\widehat{BAK}\left(=\widehat{AKI}\right)\)

e, ta có tam giác vuông AKH = tam giác vuông  AIH (cmt)

\(\Rightarrow\widehat{KAH}=\widehat{IAH}\)( 2 Góc tương ứng)

xét tam giác AIC và tam giác AKC có :

AK=AI(GT)

AC: cạnh chung

\(\widehat{KAH}=\widehat{IAH}\)(CMT)

=> tam giác AIC = tam giác AKC (C-G-C)

mk giải bài ktra cho các bn lớp 7a nè ko bt z đây mà chép 

Câu 5 (bài cuối cùng ý)

8 tháng 2 2019

bài này tao làm khác mày cơ 

30 tháng 6 2018

a)Vì trung trực của AC cắt BC tại M=>MA+MC =>Tam giác MAC cân tại M mà có góc đáy bằng góc C mà góc C là góc đáy của tam giác cân tại A=>AMC=BAC(Hai góc ở đỉnh của hai tam giác cân)
b)Xét tam giác CAN và tam giác ABM có:
AB=AC(gt)
MB=AN(gt)
Mà NAC=C+A(vì góc MAC=góc A)
ABM=C+A
=>NAC= ABM
=>Tam giác CAN=tam giác ABM(c.g.c)
=>MA=NC mà MA=MC(c/m trên)=>CM=NC
c)Thêm điều kiện góc A=450

A) Vì trung trực của AC cắt BC tại M ==> Tam giác MAC cân tại M mà nó lại có góc đáy bằng góc C mà góc C lại là góc đáy của tam giác cân tại A ==> AMC = BAC(Hai góc ở đỉnh của hai tam giác cân)

B) Xét tam giác CAN và tam giác ABM có:

AB = AC (gt)

MB = AN (gt)

Mà NAC = C + A (vì góc MAC bằng với góc A)

ABM = C + A

- NAC = ABM

- Tam giác Can = Tam giác ABM (c.g.c)

MA = NC mà MA = CM (c/m trên) ==> CM = NC

C)Thêm điều kiện góc phải là 450

2 tháng 2 2019

-tự vẽ hình

a) xét tam giác ADB và tam giác AEC, ta có:

AD=AE(gt)

Góc ADB=Góc AEC(gt)

DB=CE(gt)

Vậy tam giác ADB = tam giác AEC (c-g-c)

=> AB=AC(cặp cạnh t/ứng) 

=> ABC là tam giác cân tại A

b) Xét tam giác DMB và tam giác ENC, ta có:

DB=CE(gt)

Góc MDB=Góc NEC(gt)

Vậy tam giác DMB = tam giác ENC

=> BM=CN(cặp cạnh t/ứng)

=>góc MBD=góc NCE(cặp góc t/ứng)

c) ta thấy: góc MBD=góc CBI(đối đỉnh)

góc NCE=góc BCI(đối đỉnh)

=> góc CBI=góc BCI => tam giác IBC là tâm giác cân tại I

d) Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(cmt)

BI=IC(tam giác IBC cân tại I)

AI là cạnh chung

Vậy tam giác BAI = tam giác CAI

=> góc BAI=IAC(cặp góc t/ứng)

=> AI là tia phân giác của BAC(đpcm)