K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBMC và ΔAMD có

\(\widehat{MCB}=\widehat{MAD}\)

MC=MA

\(\widehat{BMC}=\widehat{AMD}\)

Do đó:ΔBMC=ΔAMD

b: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCDlà hình bình hành

Suy ra: AB//CD và AB=CD

=>CD=CA

hay ΔCAD cân tại C

c: CE=CA

nên CE=2CM

=>CE=2/3EM

Xét ΔEDB có

EM là đường trung tuyến

EC=2/3EM

Do đó: C là trọng tâm của ΔBDE

a: Xét ΔBMC và ΔAMD có 

\(\widehat{BCM}=\widehat{ADM}\)

MA=MC

\(\widehat{BMC}=\widehat{AMD}\)

Do đó: ΔBMC=ΔAMD

b: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó; ABCD là hình bình hành

Suy ra: AB=CD

mà AB=AC

nên CD=CA

=>ΔCAD cân tại C

6 tháng 4 2019

a, xét \(\Delta\)BMC và \(\Delta\)AMD có:

              \(\widehat{DAM}\)=\(\widehat{MCB}\)(vì so le)

              AM=MC(gt)

             \(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đỉnh)

\(\Rightarrow\)\(\Delta\)BMC=\(\Delta\)AMD(g.c.g)

b,xét tam giác AMB và tam giác CMD có:

               AM=MC(gt)

              \(\widehat{AMB}\)=\(\widehat{CMD}\)(Vì đối đỉnh)

             MB=MD(t.giác BMC=t.giác AMD

=> t.giác AMB=t.giác CMD(c.g.c)

=>AB=CD 

vì AB=AC(gt) màAB=CD=> AC=CD

=> t.giác ACD cân tại C

a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2 (định lý py-ta-go)

=> 92 + AC2 = 152

=> AC2 = 225 - 81

=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)

t i c k đúng nhé

a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)

                              => góc C < góc B < góc A (định lý)

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0