K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HN
16 tháng 12 2017
Ta có:
\(\left\{{}\begin{matrix}AD=AE\\\widehat{DAK}=\widehat{EAI}\\AK=AI\end{matrix}\right.\)
\(\Rightarrow\Delta DAK=\Delta EAI\)
\(\Rightarrow DK=EI\)
\(\Rightarrow KE+KD=KE+EI\ge KI\left(1\right)\)
Gọi AH là đường cao của tam giác ABC với H thuộc BC.
\(\Rightarrow AH^2+HB^2=AB^2\)
\(\Leftrightarrow AB^2=2AH^2\left(2\right)\)
Ta lại có \(\Delta KAI\) vuông tại A (cái này đễ thấy nha)
\(\Rightarrow AK^2+AI^2=KI^2\)
\(\Leftrightarrow KI^2=2AK^2\left(3\right)\)
Từ (2) và (3) ta suy ra được:
\(AB^2=2AH^2\le2AK^2=KI^2\)
\(\Leftrightarrow AB\le KI\left(4\right)\)
Từ (1) và (4) ta có: \(KE+KD\ge AB\)
ê of rồi à t làm ở đây luôn nhé
a b c d e k i h
Có ; AD+DB=AB
Để ; EK+DK ≥AB thì EK>AD ; DK <DB
có;ED>AD (vì A=90 độ)
có DK<DB (vì B =45 độ )
có ED//CK ( vì EA=ED) -> EDK>EKD ->EK>ED>AD
-> KE+KD ≥AB