K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2022

bAi kb với tớ tớ sẽ nói cho các bn 1 bí mật về tớ đóAi kb với tớ tớ sẽ nói cho các bn 1 bí mật về tớ đó

13 tháng 6 2020

tự kẻ hình nghen

a)xét tam giác EBC và tam giác DCB có

BC chung 

BEC=CDB(=90 độ)

EBC=DCB( tam giác ABC cân A)

=> tam giác EBC= tam giác DCB(ch-gnh)

=> BD= CE ( hai cạnh tương ứng)

b) từ tam giác EBC= tam giác DCB=> ECB=DBC( hai góc tương ứng)

=> tam giác HBC cân H

c) vì AH, BD, EC giao nhau tại H mà BD vuông góc với AC, CE vuông góc với AB=> AH vuông góc với BC ( 3 đường cao cùng đi qua một điểm)

gọi O là giao điểm của AH và BC

xét tam giác HBO và tam giác HCO có

HOB=HOC(=90 độ)

HB=HC( tam giác HBC cân H)

HBO=HCO( cmt)

=> tam giác HBO =tam giác HCO( ch-gnh)

=>BO=CO(hai cạnh tương ứng)=> O là trung điểm của BC

AH vuông góc với BC=> AH là trung trực của BC

d) xét tam giác CDB và tam giác CDK có

BD=DK(gt)

CDB=CDK(=90 độ)

DC chung

=> tam giác CDB= tam giác CDK (cgc)

=> CBD=CKD( hai góc tương ứng)

mà CBD=ECB( cmt)=> ECB=CKD

7 tháng 1 2016

Tự vẽ hình nha bạn

Ta có: tam giác ABC cân tại A
=> B = C

Ta có: Góc D = góc E = 90o (góc vuông)

K1 = K2 (2 góc đối đỉnh)

=> 180 - E - K1 = 180 - D - K2

=> B1 = C1

Vì B = C ; B1 = C1 => B - B1 = C - C1

=> B2 = C2

Vì B2 = C2 nên KBC cân tại K

=> KB = KC 

Xét tam giác AKB và tam giác AKC có:

AK cạnh chung (1)

AB = AC (2)

BK = BC (3)

Từ (1) ; (2) ; (3) = > Tam giác AKB = tam giác AKC (c - c - c) (4)

Từ (4) = > A1 = A2 (2 góc tương ứng)

=> AK là tia phân giác của góc A
=> ĐPCM

Tớ sẽ bổ sung thêm hình sau 

 

7 tháng 1 2016

thế mà không biết à
 

các bạn trả lời hãy giải hẳn ra luôn nhé

6 tháng 4 2020

chắc là bạn sai đề rồi

tam giác ABC mà góc A = 90 độ thì sao mà kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E được

18 tháng 1 2021

Sửa lại đề : A < 90*

a, Chứng minh 

\(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\RightarrowĐPCM\)

b, CM được :

\(\widehat{ADE}\)\(=\)\(\widehat{ACB}\)\(=\)\(\frac{180'-\widehat{BAC}}{2}\)

\(\Rightarrow DE//BC\)

c, CM được : \(\widehat{IBC}=\widehat{ICB}\)

\(\RightarrowĐPCM\)

d, Gọi M là giao điểm của AI và BC ,

CM được AI là tia phân giác của góc \(\widehat{BAC}\), từ đó \(\widehat{AMB}\)\(=90'\)

\(\RightarrowĐPCM\)

A D E C M B I

13 tháng 3 2022

HAHA

27 tháng 1 2022

a) Xét tam giác BCE vuông tại E và tam giác CBD vuông tại D:

BC chung.

Góc B = Góc C (Tam giác ABC cân tại A).

=> Tam giác BCE = Tam giác CBD (cạnh huyền - góc nhọn).

b) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E:

Góc A chung.

AB = AC (Tam giác ABC cân tại A).

=> Tam giác ABD = Tam giác ACE (cạnh huyền - góc nhọn).

=> Góc ABD = Góc ACE (2 góc tương ứng).

Xét tam giác BEK và tam giác CDK:

Góc EBK = Góc DCK (Góc ABD = Góc ACE).

BE = CD (Tam giác BCE = Tam giác CBD).

Góc BEK = Góc CDK (= 90o).

=> Tam giác BEK = Tam giác CDK (g - c - g).

c) Xét tam giác ABC:

BD là đường cao (BD vuông góc với AC).

CE là đường cao (CE vuông góc với AB).

BD cắt CE tại K (gt).

=> K là trực tâm.

=> AK là đường cao.

Xét tam giác ABC cân tại A: AK là đường cao (cmt).

=> AK là đường phân giác góc BAC (Tính chất các đường trong tam giác cân).

7 tháng 2 2020

giúp mk với các bạn ơi mk phải đi học thêm

7 tháng 2 2020

A B C I E D K _ _ + +

a) Xét \(\Delta\)BCE và \(\Delta\)BCD có:

CEB = BDC (= 90o)

BC: chung

EBC = DCB (\(\Delta\)ABC cân)

\(\Rightarrow\Delta\)BCE = \(\Delta\)BCD (ch-gn)

b) Xét \(\Delta\)BEK và \(\Delta\)CDK có:

BEK = CDK (= 90o)

EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)

EKB = CKD (đối đỉnh)

\(\Rightarrow\Delta\) BEK = \(\Delta\)CDK (cgv-gn)

c) Ta có: 

AB = AE + EB

AC = AD + DC

Mà AB = AC (\(\Delta\)ABC cân), EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)

\(\Rightarrow\)AE = AD

Xét \(\Delta\)AKE và \(\Delta\)AKD có: 

AEK = ADK (= 90o)

AE = AD (cmt)

AK: chung

\(\Rightarrow\)\(\Delta\) AKE = \(\Delta\)AKD (ch-cgv)

\(\Rightarrow\)KAE = KAD (2 góc tương ứng)

\(\Rightarrow\)AK là phân giác BAC

d) Xét \(\Delta\)AIB và \(\Delta\)AIC có:

AB = AC (\(\Delta\)ABC cân)

AI: chung

IB = IC (I: trung điểm BC)

\(\Rightarrow\)\(\Delta\) AIB = \(\Delta\)AIC (c.c.c)

\(\Rightarrow\)IAB = IAC (2 góc tương ứng)

\(\Rightarrow\)AI là phân giác BAC

Ta có:

+) AK là phân giác BAC

+) AI là phân giác BAC

\(\Rightarrow\)A, K, I thẳng hàng

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc A chung

=>ΔADB=ΔAEC

=>góc ABD=góc ACE

b: góc HBC+góc ABD=góc ABC

góc HCB+góc ACE=góc ACB

mà góc ABD=góc ACE; góc ABC=góc ACB

nên góc HBC=góc HCB

=>ΔBHC cân tại H

=>HB=HC>HD