Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a, Vì I là trung điểm MK và AC nên AMCK là hbh
Mà AM là tt nên cx là đường cao
Do đó AM⊥MN nên AMCK là hcn
b, Vì AMCK là hcn nên AK//CM hay AK//MB và AK=CM=BM(do AM là tt)
Do đó AKMB là hbh
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
![](https://rs.olm.vn/images/avt/0.png?1311)
Tứ giác AMCK là hcn vì
AI=IC(I là trung điểm của AC)
IM=IK(K là điểm đối xứng vs M qua I)
=>Tứ giác AMCK là hình bình hành(DHNB số 5)
Xét tứ giác AMCK có góc M vuông
=> Hình bình hành AMCK là hcn
Tứ giác ACMB là hình bình hành vì
Ta có Bm ss AK (MC ss AK theo tính chắt hcn)
Xét tam giác ABC có BM=MC,AI=IC
=>IM là đường trung bình của tam giác ABC
=>IM ss Ab
Mà I nằm giữa M và K =>MK ss AB
=>ABMK là hình bình hành (DHNB số 1)
Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
xin loi minh ko biet nha bn
xin loi minh ko biet nha bn
xin loi minh ko biet nha bn
a, Xet tu giac AMCK co :
I la trung diem AC (IA=IC)
I la trung diem MK (MI=IK)
Hay AMCK la HBH
Ma AM la trung tuyen cua tam giac ABC
Hay AM la duong cao cua tam giac ABC
=> M=90
=> AMCK la HCN
b, Ta co : BM=MC( AM la dtt)
Ma : AK=MC (t/c HCN)
=> BM=AK
c,