Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên tia đối của AB hay sao, trên cạnh AB biết vẽ về phía nào
a) ta có: tam giác ABC cân tại A
=> AB = AC = 5 cm ( định lí tam giác cân)
=> AC = 5 cm
=> AC < BC ( 5 cm < 6 cm)
\(\Rightarrow\widehat{ABC}< \widehat{BAC}\) ( quan hệ cạnh và góc đối diện)
b) Xét tam giác ABD và tam giác ACD
có: AB = AC (gt)
góc BAD = góc CAD (gt)
AD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)
c) Xét tam giác ABC cân tại A
có: AD là đường phân giác góc BAC (gt)
=> AD là đường trung tuyến của BC ( tính chất trong tam giác cân)
mà BE là đường trung tuyến của AC (gt)
AD cắt BE tại G (gt)
=> G là trọng tâm của tam giác ABC ( định lí trọng tâm)
=> CF là đường trung tuyến của AB ( định lí )
=> AF = BF ( định lí đường trung tuyến)
d) Xét tam giác ABC cân tại A
có: AD là đường phân giác của góc BAC (gt)
=> AD là đường cao ứng với cạnh BC ( tính chất tam giác cân)
\(\Rightarrow AD\perp BC⋮D\) ( định lí đường cao)
mà AD là đường trung tuyên của BC ( phần c)
=> BD = CD = BC/2 = 6/2 = 3 cm
=> BD = 3cm
Xét tam giác ABD vuông tại D
có: \(BD^2+AD^2=AB^2\left(py-ta-go\right)\)
thay số: \(3^2+AD^2=5^2\)
\(AD^2=5^2-3^2\)
\(AD^2=16\)
\(\Rightarrow AD=4cm\)
mà G là trọng tâm của tam giác ABC
AD là đường trung tuyến của BC
\(\Rightarrow\frac{DG}{AD}=\frac{1}{3}\Rightarrow\frac{DG}{4}=\frac{1}{3}\Rightarrow DG=\frac{4}{3}cm\)
Xét tam giác DGB vuông tại D
có: \(DG^2+BD^2=BG^2\left(py-ta-go\right)\)
thay số: \(\left(\frac{4}{3}\right)^2+3^2=BG^2\)
\(BG^2=\frac{97}{9}\)
\(\Rightarrow BG=\sqrt{\frac{97}{9}}cm\)
mk ko bít kẻ hình trên này, sorry bn nhiều nhé!
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
cho tam giác ABC cân tại A, đường trung tuyến AM. Cho biết AB=13cm; BC=10cm.a) tính độ dài AMb) trên AM lấy điểm M sao cho GM=$\frac{1}{3}$13 AM. Tia BG cắt AC tại N. Ch/m NA=NCc)tính độ dài BNd) tia CG cắt AB tại L. CMR: LN // BC
toan j de the