Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
a)xét tứ giác AMCN có:
EA=EC(E trung điểm của AC )
EM=EN (gt)
mà AC cắt MN tại E
=>AMCN là hình bình hành(1)
ma AM vuông góc BC (gt)
=> góc AMC =90 độ (2)
từ 1 va 2 => AMCN là hình chữ nhật
b)ta có AMCN là hình chữ nhật (cmt)
=> MN =AC
mà AC=AB (tam giac ABC cân tại A)
=>MN=AB
c)mình không bít trình bày
mình đi chứng minh ANMC là hình bình hành => MN//AB
muốn MN vuông góc AC với AB để suy ra AMCN là hình vuông thì buộc AC vuông góc AB
=> tam giác abc cân tại A phải thêm điều kiện vuông nữa
hướng là vậy bạn tự trình bày nha
a) do am là đường trung tuyến
=>m là trung điểm bc
Mà m là trung điểm của ad (do d là điểm đối xứng với a qua m)
=>ad giao với ad tại m là trung điểm mỗi đường
=>abcd là hbh
b) Giả sử abcd là hcn
=>góc a=90 độ
=>tam giác abc vuông tại a
Vậy tam giác abc là tam giác vuông tại a thìabcd là hcn
c) gọi mn giao ac tại e
=>e là tđ của ac
e là tđ của mn
=>anmc là hbh
ta có am=mc(vì am là đường trung tuyến trong tam giác vuông)
=>amnc là hình thoi
cm: abmn là hbh
=>ab=mn
diện tích amnc=ac*mn/2=4*3/2=6
\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao
Vì D là trung điểm AC và MN nên AMCN là hình bình hành
Mà \(AM\bot BC\Rightarrow AM\bot MC\)
Do đó: AMCN là hình chữ nhật
\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)
Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)
Vậy ABMN là hình bình hành
\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)
Áp dụng PTG vào tam giác ABM vuông M
\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)
Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)
a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).
\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.
Xét tứ giác AMCN có:
+ D là trung điểm của MN (N đối xứng với M qua D).
+ D là trung điểm của AC (gt).
\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).
Lại có: \(\widehat{AMC}\) = 90o (cmt).
\(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).
b) Tứ giác AMCN là hình chữ nhật (cmt).
\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).
\(\Rightarrow\) AN // BM.
Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.
\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.
Mà AN = MC (Tứ giác AMCN là hình chữ nhật).
\(\Rightarrow\) BM = MC = AN.
Xét tứ giác ABMN có:
+ BM = AN (cmt).
+ BM // AN (cmt).
\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).
c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).
Xét tam giác AMB vuông tại M có:
AB2 = AM2 + BM2 (Định lý Pytago).
Thay số: 52 = AM2 + 32.
\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).
Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).