Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: góc MAH=góc BAH
góc BAH=góc MHA
=>góc MAH=góc MHA
=>ΔMAH cân tại M
c: Xét ΔACB có
H la trung điểm của CB
HM//AB
=>M là trung điểm của AC
=>B,G,M thẳng hàng

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔMAD và ΔMBH có
góc MAD=góc MBH
MA=MB
góc AMD=góc BMH
=>ΔMAD=ΔMBH
=>AD=BH
mà AD//BH
nên ADBH là hình bình hành
=>BD=AH

a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có
CH chung
HA=HM
=>ΔCHA=ΔCHM
=>góc ACH=góc MCH
=>CH là phân giác của góc ACM
b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có
HA=HM
góc HAC=góc HDM
=>ΔHAC=ΔHMD
=>HC=HD
=>AM là trung trực của CD

a)Xet 2 tam giac vuong AHB va DHC co:
HC chung
DH = AH
=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)
Ta co : CA=CD (2 canh tuong ung)
=>\(\Delta\)CAD can
b)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\hat{HAB}=\hat{HAC}\)
mà \(\hat{HAB}=\hat{MHA}\) (hai góc so le trong, MH//AB)
nên \(\hat{MAH}=\hat{MHA}\)
=>AM=MH
Ta có: MH//AB
=>\(\hat{MHC}=\hat{ABC}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{MCH}\) (ΔABC cân tại A)
nên \(\hat{MHC}=\hat{MCH}\)
=>ΔMHC cân tại M
=>MH=MC
mà MA=MH
nên MA=MC
=>M là trung điểm của AC
=>HM là đường trung bình của ΔAHC
c: Xét ΔACH có HA+HC>AC
mà AC=2HM
nên HA+HC>2HM
=>HA+HC>HM